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PREFACE

As far as the laws of mathematics refer to reality, they are not certain; and as

far as they are certain, they do not refer to reality. - A. Einstein

Plasmas, such as those found in the space environment or in fusion energy devices, are often

modeled as electrically conducting fluids. Fluids, and thus plasmas, when energetically

stirred, have regions of highly nonlinear, chaotic behavior known as turbulence. Although

turbulence in fluids and plasmas is often the critical factor in determining overall long-term

behavior, a general theory of turbulence has been elusive. Establishing such a general theory

is a 'grand challenge' to modern science.

The present work describes a statistical theory concerning a certain class of nonlinear,

finite dimensional, dynamical models of turbulence. These models arise when the partial

differential equations describing incompressible, ideal (i.e., non-dissipative) homogeneous

fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large

set of ordinary differential equations. These equations define a divergenceless flow in a high-

dimensional phase space, which allows for the existence of a Liouville theorem, guaranteeing

a distribution function based on constants of the motion (integral invariants). The novelty

of these particular dynamical systems is that there are integral invariants other than the

energy, and that some of these invariants behave like pseudoscalars under two of the discrete

symmetry transformations of physics, parity and charge conjugation.

In this work, we show that the 'rugged invariants' of ideal homogeneous turbulence

are, in fact, the only significant scalar and pseudoscalar invariants. Furthermore, we show

that the existence of pseudoscalar invariants causes the symmetry of the original equations

to be dynamically broken, inducing a nonergodic structure on the associated phase space.

Although realistic turbulence is non-ideal, it also has no existing viable statistical or kinetic

theory to describe it. In lieu of this, and perhaps as a remote precursor, what is presented

here is the complement: a statistical mechanics of ideal homogeneous turbulence. This, in

turn, may bring us closer to meeting the 'grand challenge.'

This work began two decades ago, when the author noticed that canonical ensemble

predictions did not match the results of numerical experiments by a small but significant

amount. Following this lead, an interesting story unfolded, leading to an understanding of

what caused the initial mismatch, and the development of the statistical mechanics of an

intriguing class of conservative, nonlinear dynamical systems. What is presented here is not
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an extension of chaos theory, which deals with motion in low-dimensional phase spaces, but

rather a statistical theory of conservative dynamical systems with relatively large, but finite,

dimensional phase spaces.

A note on references: The references given here are mainly the ones that have been useful

to the author in his research. No attempt has been made to be thorough in the citing of

references that might be concerned with the general topic of ideal homogeneous turbulence.

History shows us that many people work in parallel on any given research topic, and that

essentially identical results are often independently produced. However, the modern age

has the advantage of electronic search and communication systems, and in using these, the

author has tbund no similar work addressing the central subjects presented herein: Broken

symmetry and nonergodicty in ideal homogeneous turbulence.

I would like to thank David Montgomery for introducing me to this subject. I thank

Robert Rubinstein for his review of this document and for catching some errors. Of course,

any errors that remain are mine alone. (I would appreciate being informed of any errors,

either typographical or conceptual.) Finally, I would like to thank all the other individuals

and institutions that have helped support this work over the past two decades.

John V. Shebalin

j.shebalin@jsc.nasa.gov

Advanced Space Propulsion Laboratory

National Aeronautics & Space Administration

Lyndon B. Johnson Space Center

Houston, Texas 77058
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Chapter 1

The Problem of Turbulence

1.1 Introduction

Turbulence in fluids appears to be a ubiquitous phenomenon, occurring in astrophysical,

geophysical, and engineering flows. The historical course of fluid analysis, however, was

to initially concentrate on the examination of laminar flow problems, as exact solutions

were often possible. This allowed fluid dynamicists and mathematicians to gain analytical

practice by using tools established in other fields, such as potential and complex variable

theory, and to build a base from which to gain further understanding of the more complicated

motions of fluids. Although this practice was useful and necessary, observation of real fluids

indicates that there are often regions where the flow seems convoluted, unsteady, and prone

to apparent randomness, involving the generation of fluctuating structures termed 'eddies'

whose instantaneous sizes vary over a wide range.

As the energy being input into a fluid increases, there is typically a transition from

laminar to turbulent flow, and this occurrence can be analyzed by assuming that a small

perturbation to laminar flow occurs, linearizing the relevant equations in terms of this small

perturbation, and studying its subsequent growth. This step produced and still produces

valuable insights into fluid and magnetofluid mechanics and establishes a bridge between

laminar and turbulent flow. In the past, it also allowed research to proceed, as the study of

fluids could still be approached analytically, with quill and parchment, as it were, in the era

before the widespread availability of high-speed electronic computing machines.

Turbulence, the final step and most general state of an energetic fluid, has proved, how-

ever, to be far more resilient to detailed mathematical analysis than the preceding two steps.

Even with the advent of modern computing, a full and detailed study is still difficult, if not

currently impossible, due to the extremely large number of degrees of freedom in any realistic

turbulent flow, in comparison to the capacity of either available or envisioned computers to

simulate fluid motion. Computers with their limited memories can only capture an exceed-

ingly small fraction of the degrees of freedom inherent in a fully turbulent, thigh Reynolds

number' flow. To move beyond this impasse, various analytical theories of turbulence have

been put forward, based on intelligent guesswork. The most successful of these is the rela-
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tively simple dimensional analysis of Kolmogorov, leading to the famed energy spectral index

of-5/3 for the so-called inertial range. Other, more detailed, analytical theories have been

built on seemingly logical hypotheses, coupled with perturbation techniques, but have not

been generally successful.

Turbulence in the physical universe is found in the flow of ionized gases (i.e., plasmas

viewed as magnetofluids) within the sun, the solar wind, and planetary magnetospheres,

as well as in the fluids found in planetary atmospheres and oceans, and in the myriad

engineering systems devised by human ingenuity. Turbulence is a flow of energy, from its

injection at relatively large scales, to its transfer through an inertial range, to its dissipation

at relatively small scales. This m_v be thought of as a transfer of energy from larger eddies

to smaller eddies to smaller ones still, until, at the end of the cascade, flow energy becomes

simply molecular heat. The challenge is to discover a 'law of turbulence' that describes the

details of this energy transfer. This challenge continues to await the intrepid explorer, who

may need to invent new theories and mathematical techniques, perhaps building on what is

known, perhaps making a radical departure.

The main characteristic of turbulence is that it is a non-equilibrium dynamical process

in which energy is ultimately dissipated. If energy input is abated at some point, the phe-

nomenon becomes 'decaying turbulence,' and if energy is continually injected into the flow,

it may be called 'driven turbulence.' Realistically, turbulence contains a dissipation mech-

anism, which, for fluids, is provided by viscosity, and for plasmas, by electrical resistivity

as well as viscosity. Once heat is produced, thermal conductivity also comes into play, and

will be important if compressibility is a factor in the dynamics of the fluid. However, since

density variation is often not a critical factor in turbulent flow, particularly for those of low

Mach number, then assuming at the outset that turbulent flows are incompressible leads to a

simpler set of basic equations, while still retaining the essential nonlinear interactions which

cause turbulence. This approximation will be adopted here.

Although turbulence involves a large number of interacting degrees of freedom, which

suggests that statistical mechanics be applied, the presence of dissipation, and the transfer

of energy generally towards the smaller length scales, requires instead that something like

kinetic theory be used. Thus, many analytical theories of turbulence have at their heart

a hierarchy of integral equations, which have been treated by expansions similar to those

found in quantum field theory, so that such approaches are often called 'field-theoretic.'

In contrast, classical statistical mechanics has conservative systems in equilibrium as its

domain of applicability, or at least systems that can be approximated in such a way. In the

real world, it is not possible to turn dissipation off in an astrophysical or geophysical fluid

(although this does occur in one component of a superfluid). In the world of analytical and

computational models, however, it is possible to set viscosity and resistivity identically equal

to zero. Mathematically, this is an example of a singular perturbation problem- setting a

small parameter multiplying the highest derivative in an equation equal to zero changes the

fundamental nature of the equation and its solutions. Although this may have its uses, it

must be remembered that this introduces a layer of approximation that formally disconnects

real and ideal turbulence.
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1.2 Ideal Flow

Neglecting dissipation creates the mathematical entities called ideal fluids and ideal mag-

netofluids. The advantage gained is that standard equilibrium statistical mechanics can be

applied (as will be shown), albeit only to model systems. Furthermore, if the flow volume of

interest is far removed from bounding surfaces, then statistical characteristics can be assumed

independent of spatial position. Such (real or ideal) turbulence is termed homogeneous, and

is often also isotropic, unless there is some mechanism imposing a preferred direction on

the system, such as a constant magnetic field in a magnetofluid, in which case it may be

anisotropic. Ideal turbulent systems are purely mathematical entities whose governing equa-

tions contain nonlinear terms identical to those found in the equations of real turbulence.

Ideal equations lack only the linear dissipative term found in real equations, and though

this may seem a negligible difference, it is not - it is an essential difference. Nevertheless,

ideal turbulence has its own attraction and the search for ideal statistical solutions has an

instructive purpose.

Since either real or ideal turbulence is highly nonlinear, exact analytical solutions do

not exist and numerical techniques must be utilized to integrate the equations of motion.

This introduces further approximation, as computers are finite machines, so that round-

off errors and finite time-integration steps provide another layer between physical reality

and computational results. Here, we will use finite Fourier expansions to represent spatial

variation, which has the benefit of allowing for the exact evaluation of spatial derivatives,

albeit only down to some minimum wavelength. Although computer models can approximate

turbulent systems, it must be remembered that their efficacy in representing either real or

ideal turbulent flows is determined only to the extent that they match physical observations

in the case of real flows, or some independent statistical theory in the case of ideal flows.

The purpose of the present work is to develop the statistical mechanics of ideal homoge-

neous, incompressible, fluid and magnetofluid turbulence. It will turn out that this statistical

mechanics is an interesting and non-trivial extension of standard canonical ensemble theory,

due to the presence of significant invariant integrals of the motion, in addition to the en-

ergy. Some of these additional invariant integrals are pseudoscalars under various symmetry

transformations of the equations of motion, and this will lead to what has been called broken

ergodicity. The systems to which this statistical theory is applied are computer models of

ideal turbulence, and these computer models allow us to run numerical experiments. Since

these models are highly nonlinear, we do not know in advance, nor can we predict, any pre-

cise details of the flow, which is highly stochastic. Instead, we can make predictions of ideal

statistical behavior and compare these with time averages determined through numerical

integration, thereby testing the statistical theory.

The development of a statistical theory for ideal turbulence is expedited by the fact that

the various integral invariants can be expressed as expectation values of quadratic forms,

which leads to Gaussian distribution functions in the phase spaces under consideration, thus

allowing a relatively straightibrward evaluation of expectation values. Since all fundamental

interactions in nature are describable by nonlinear partial differential equations, the theory
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developed here has obvious analogies in other areas of physics and applied mathematics

where dissipation is either not present or can be ignored. (However, in these other areas, the

integral invariants are related to forms that may not be quadratic, leading to non-Gaussian

distribution functions that make expectation values more difficult to evaluate.) Finally,

there is a remote theoretical possibility that ideal results might be extended into a non-

ideal domain, and this will be briefly discussed, following the primary item of interest: the

development of a statistical theory for ideal turbulence.

1.3 References for Further Reading

A classic text on turbulence is [Batchelor 53].

A more modern text that gives a good overview and critique of the current status of turbu-

lence research is [Frisch 95].

Analytical theories, although they do not provide a solution to the 'problem of turbulence,'

indicate the inherent difficulty of this problem by showing the forests of complication into

which researchers have been forced to enter. A detailed discussion of these theories, following

a good preliminary overview of the basics of turbulence, is found in [McComb 95].



Chapter 2

The Equations of Motion

First, we will establish the basic equations of fluids and magnetofluids, and then reduce

them to those needed for the study of incompressible ideal homogeneous turbulence. We

begin by assuming that a continuous, electrically conducting fluid exists, although it is pos-

sible to start from an underlying set of discrete particles, and use kinetic theory to derive a

single fluid continuum approximation. In the physics of plasmas, this is a common proce-

dure, and moves the perspective from microscopic kinetics to macroscopic continua. In the

continuum approximation, characteristic length scales are much greater than inter-particle

distances, and charge separation and associated quasi-static electric fields are assumed to

be dynamically unimportant. However, electrical conductivity is generally still present, so

that magnetic fields may arise due to self-induced or externally imposed electrical currents.

The study of such fluids is often termed magnetohydrodynamics (MHD) or magneto fluid

mechanics, and it contains, as a subset, (nonconducting) fluid mechanics.

The state of a magnetofluid in a given volume V and interval of time T is completely

specified if its density p, velocity u, magnetic field B, and pressure p are known at all points

x of the volume V at all times t within the interval T. Thus, density, velocity, magnetic

field, and pressure are generally functions of x and t, and may be denoted by p(x, t), u(x, t),

B(x, t), and p(x, t), respectively. (However, in what follows, one or both of the arguments x

and t may be omitted for brevity.) There are, of course, other assumptions that can be made,

resulting in various levels of complexity. For our purpose, the stated assumptions, along

with incompressibility, will suffice, and the resulting system of equations will be sufficiently

challenging.

The Continuity Equation

Consider now a small volume 5V within the fluid. If the bounding surface of 5V moves with

the fluid, then the mass 5rn = pSV within 5V is constant:

dSrn dSV dp
= p +5V = 0. (2.1)

dt dt dt
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Now, assume that 5V is an infinitesimal cube, which can be represented in Cartesian coor-

dinates as 5V = 5x@Sz, where 5x = x2 - Xl, etc. Neglecting terms of higher order than 5x,

we have, using 2 = dx/dt = ux,

OUx
d_x = _2 - 21 = 5x. (2.2)
dt Ox

Since analogous results hold for 5y and 5z, we have

5ySzddSt dSy dSz= + 5xSz dt + 5xSy dt

( Oux Ouy Ouz )= 5xSySz \ Ox + Oy + Oz

= 5VV. u. (2.3)

Combining (2.1) with (2.3) gives

5V ( dp )dt +pV" u = 0. (2.4)

Here, we use the chain rule of differentiation to expand the total time derivative into partial

derivatives with respect to position and time:

dp Op dx Op dy Op dz Op
= + + +

dt Ot dt Ox dt Oy dt Oz

Op
+u. Vp. (2.5)

Ot

Since p in (2.5) can represent any scalar function or component of a vector function, the

convective derivative can be generally defined as

d 0
- +u.V. (2.6)

dt Ot

Note that the total time derivative refers to the changes occurring in a fluid element as we

follow it in its motion, and when it is used explicitly in the equations of motion, such a for-

mulation is called Lagrangian fluid mechanics. In Lagrangian fluid mechanics, an individual

velocity is attached to each fluid element as it moves about. Alternatively, if (2.6) is used

to convert all total time-derivatives to partial differential form, then we have Eulerian fluid

mechanics, in which we focus on the behavior of a fluid as it moves past fixed points of space.

In Eulerian fluid mechanics, velocity is a field that has values identified with points in space,

rather than to individual particles of fluid. In Lagrangian fluid mechanics, one may consider

the small volume 5V as being attached to the fluid element, while in the Eulerian view,

the small volume 5V is associated with a fixed location in space, and fluid elements move
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through it. It is this latter viewpoint that is most common and will be generally adopted

here (although the Lagrangian viewpoint has its occasional uses).

Finally, after combining (2.4) (omitting the non-zero factor 51/) with (2.5), we get the

continuity equation:

Op
+V. (pu) = 0. (2.7)

Ot

This is the first of the basic equations of fluid mechanics, and defines how density is related

to velocity in a compressible fluid.

Here, however, we wish to consider incompressible flow. In this case, the density p =

constant, and (2.7) becomes

V.u = 0. (2.s)

If (2.8) holds, the velocity field u is often said to be solenoidal, drawing on magnetic termi-

nology.

The Navier-Stokes Equation

The next basic equation determines the evolution of fluid momentum density. The momen-

turn of an infinitesimal fluid element, of mass 5m = pSV = constant, is p = 5mu. Applying

Newton's second law, the time rate of change of p is due to whatever forces F are imposed:

dp/dt = F. Upon using (2.6), this becomes

Ot + u. Vu = F. (2.9)

Now, the various forces that make up F, and thereby affect fluid motion, must be determined.

First, there is the pressure p in the fluid, which is a force per unit area applied to

the six faces of the cube of volume 5V = 5xSySz, and the difference in pressure between

opposing faces will give the net ibrce due to pressure in the direction normal to those faces.

For example, let the two faces with area 5ySz and normal along the x-direction have x-

coordinates x and x + 5x. The component of force in the x-direction due to pressure points

from high to low pressure; this has the limiting form:

Fp,x = lim -[p(x+Sx) -p(x)]SySz
6x--+0

-OPsIL (2.10)
Ox

The components of the pressure force along the y- and z-directions, Fp,y and Fp,z, respectively,

can be determined in a similar manner. Thus, the total force on 5V due to pressure is

Fp = -Vp 51/. (2.11)
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The pressure p is an example of a stress on the surfaces of a fluid element, whose (negative)

gradient produces a net force.

Another force may arise due to shear stresses, which are also forces per unit area and

which occur when neighboring fluid elements move at different velocities. This may be

thought of as a frictional force between the surfaces of adjoining faces of fluid volumes.

Consider a cubical fluid volume 5V centered at x = (x, y, z) and an adjoining one 5V1 of

the same volume centered at x' = (x + 5x, y, z). The shear stress crx is proportional to

the velocity difference between x' and x (the shear) divided by the distance 5x, with a

proportionality constant # (the dynamic viscosity):

O.x(Xl ) __ limpU(X')-u(x) 0u
_x-_o 5x = # Ox"

(2.12)

The shear stress can be visualized as manifesting itself on the surface between 51/and 51/_,

such that a force acts at the position Xl = (x + 5x/2, y,z). Similarly, consider another

volume 5172 located at x" = (x- 5x, y, z); by changing +Sx to -Sx in (2.12), and defining

x2 = (x- (5x/2, y, z), we have

u(x") u(x) 0uerx(x2) = lim - - . (2.13)_z-_o 5x - # Ox

The net shear force Fs,_ acting on the x-directed faces (of area 5y(Sz ) of the fluid volume

5V, is

Fs,_(x) = lim [cry(x1) + erx(x2)] @Sz
_x---_0

O0" x

= Ox 5x@Sz

O (Ou) 5V. (2.14)= Ox POx

Although # may, in general, be a function of position, here we will assume # = constant. In

this case,

02u

Fs,z(x) = #0x 2 5V. (2.15)

Since the procedure for finding Fs,x can similarly be applied to find the shear forces Fs,y and

Fs,z due to viscous stresses acting on the faces of 5V normal to the y- and z-directions, we

see immediately from (2.15) that x _ y produces Fs,y and x --+ z produces F_,z. Adding all

these shear tbrces together yields the total force F_ due to viscous shear on a fluid element

5m:

F_ = F_,x +Fs,y + S s,z = #V2u 51/. (2.16)
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Thus we have found the second of two forces that act on the surfaces of an incompressible

fluid element, and thereby affect its motion.

Putting (2.11) and (2.16) into (2.9), we arrive at the gavier-Stokes equation:

(on )P Ot +u'Vu = -Vp+pV2u+f. (2.17)

Here f denotes any additional force densities related to body forces F = f_V that may

be acting on a fluid element. In classical physics, the only available candidates for F are

gravitational or electromagnetic forces. Gravity is only important when compressibility is,

so it is not of concern here. The electromagnetic force is important in a magnetofluid, and is

due to the presence of electrical currents and magnetic fields. It will be discussed presently.

The pressure p appears to be a new independent fluid variable in (2.17), and would require

another time-evolution equation to describe it, if the fluid were compressible. However, for

incompressible flow, p can be determined by taking the divergence of (2.17), using (2.8) to

produce

V2p = V-(f-pu-Vu). (2.18)

Thus, p is found for incompressible flow by solving the Poisson equation (2.18), which depends

only on the instantaneous values of f and u (since p is constant).

As Helmholz's theorem tells us, a vector field is determined by its divergence, curl and

boundary values, and we can apply this to further define the equations for u. Here, periodic

boundary conditions will be in effect, and the divergence of u is zero, by (2.8), so what

remains is to find an equation for the curl of u, which is called the vorticity: w = V x u.

Taking the curl of (2.17), and using some well known vector identities, produces the vorticity

equation:

Ot = Vx uxco+ +_,V2co. (2.19)

Here, the kinematic viscosity is _ = #/p and is also a constant. Electromagnetic forces are

represented through the introduction of the appropriate f in (2.19), which is our next topic.

Magnetohydrodynamics

When a fluid is able to conduct electricity, the subject of fluid mechanics expands into what is

known as MHD or magnetofluid dynamics. Since electromagnetism is now included, perhaps

a good place to start a discussion is with Maxwell's equations, the governing equations of all

electric fields E and magnetic fields B. In SI units, and in free space, these equations are

V-B = 0 (2.20)



10 CHAPTER 2. THE EQUATIONS OF MOTION

v. E = (2.21)
CO

1 0E

VxB = #OJ+c20t (2.22)

0B

V x E = - Ot . (2.23)

The constants eo and #o are the electric permittivity and magnetic permeability, respectively,

of free space, while c is the speed of light, pe is the electric charge density and j is the electric

current density. The last term on the right side of (2.22), divided by Po, is called the

displacement current.

For incompressible fluid mechanics, characteristic flow velocities Uo are small with respect

to the speed of sound, and thus very small with respect to the speed of light c. If Lo

is a characteristic length, and To = Lo/Uo is a characteristic time, then (2.23) tells us

that nominal magnitudes of E and B (call them Eo and Bo, respectively) are related by

Eo _., BoUo. Using this, the relative value of the last term on the right side of (2.22) is

c -20E/Ot U2o
(2.24)

V ×BI d"

Thus, the term c-20E/Ot is negligible compared to the other terms in (2.22). The equation

(2.22) then reduces to a defining relation between current and field:

#oj = V x B. (2.25)

[As a historical aside, Maxwell generalized (2.22) from the known time-independent rela-

tionship (2.25), so that taking the divergence of (2.22) and using (2.21) would lead to a

continuity equation for electric charge. This discovery of the 'displacement current' com-

pleted the mathematical foundations of electromagnetism, which were thereafter called, in

his honor, Maxwell's equations.]

While (2.24) indicates that the time rate of change of E is negligible in MHD, this is not

necessarily true for E itself. In fact, we can find an expression for E, and through this, an

expression for the charge density pc. First, we can introduce a vector potential A because of

(2.20):

V.B=0 --+ B=VxA. (2.26)

Here we may choose a condition (called a gauge condition) on the divergence of A. We

choose

V.A = 0. (2.27)

Second, we use (2.23) and (2.26) to introduce a scalar potential cp:

V×E= 0B (0A)- Ot --+ V× E+ Ot =0

OA

E+ Ot = -V_. (2.28)
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The electric field E is therefore determined by qo and A:

0A
. (229)E = -Vg)- Ot

Finally, taking the divergence of (2.29), then using (2.21) and (2.27), yields

V.E = -V2_o = P_ (2.30)
£o

To reiterate, although OE/Ot is neglected in the MHD approximation, E and Pe are generally

nonzero.

Now we determine the form of E. Let the fields which are seen in the Lagrangian reference

frame attached to a moving fluid element be denoted by E' and B', and the (Bulerian)

fields as seen at fixed points of space by E and B. These fields are connected by Lorentz

transformations which, for the low velocities of interest here, become

E'=E+uxB and B'=B. (2.31)

In addition, the current j in the reference frame attached to a moving fluid element can be

given by the simple Ohm's law: j = dE', where a is the electrical conductivity of the fluid

(which will be assumed constant here). Upon using (2.31), Ohm's law becomes

j = + u × U). (2.32)

Solving (2.32) for E and using (2.25) for j produces

E = r/VxB-uxB. (2.33)

The constant r/ is the resistivity: r/ = (#o(7) -1. Combining (2.33) and (2.29) gives the

evolution equation for the vector potential:

0A
= -V_ + u x B- r/V x B. (2.34)

Ot

Taking the divergence of (2.34), and using (2.27) and (2.30), gives the MHD expression for

charge density:

= = -V.(u× B). (2.35)
£o

Note that (2.35) and (2.18) are similar in the way they define electrostatic potential p and

static pressure p, respectively.

Putting (2.33) into (2.23), or equivalently, taking the curl of (2.34), gives the magnetic

field evolution equation:

OB
= V × (u × B)+ r/V2B. (2.36)

Ot



12 CHAPTER 2. THE EQUATIONS OF MOTION

Note that this equation for the magnetic field B has a similar structure to (2.19). Since

B is the evolving quantity, and j is defined by (2.25), it is important to recognize that, in

the MHD approximation, B determines j, rather than the reverse, which occurs in the more

general case when (2.22) must be used instead of (2.25).

The electromagnetic force density f appearing in (2.19) is

f = j x B. (2.37)

Here, this will be called the magnetic force density. It is essentially the vector sum of the

Lorentz forces qv x B acting on the individual particles of charge q and velocity v which

collectively constitute the 'fluid' in 5V. Placing (2.37) into (2.19) gives the vorticity equation:

( 1 )Ot = Vx uxw+ jxB +uV2w. (2.38)
P

There are two dissipation coefficients in (2.38) and (2.36): the viscosity u and the resistivity

r/. If no energy is input into the magnetofluid, the presence of u and r/ ensures that any

initial energy will decay towards zero, as will be shown in the next chapter. First, let us look

at the non-dimensional form of the equations of motion.

Non-dimensional Equations

The formal procedure for producing non-dimensional equations begins with the following

assignments:

Lo, (2.39)
u = Uou', B = BOB', x = Lox', t = Uo t.

Furthermore let Bo = v/popUo, which equates characteristic velocity Uo with the so-called

Alfvdn velocity, UA = Bo/v/#op. Placing (2.39) along with p = constant into (2.38) and

(2.36) yields

1 V,2w, (2.40)
OW'ot, = V'x (u'xw'+j'xB')+Re

1 V,2B,. (2.41)
OB'ot, = V'x (u'xB')+RM

The Reynolds number Re, magnetic Reynolds number RM, and V' are

Re =- UoLo, RM =-- fJoLo , V'-= 0 (2.42)
u _! Ox'

The dimensionless numbers Re and RM characterize the magneto-flow, and any two systems,

independent of relative physical size, with the same values of Re and RM are said to have

similar flouT.
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We will always work with the equations in non-dimensional form. In this case, it is

convenient to remove all the primes in (2.40) and (2.41), and also to set R-[ 1 = u and

R_] = 7, for brevity, where _ and r/are now dimensionless numbers. The result is a set of

non-dimensional equations for the time development of the fields u and B:

003
= Vx (uxw+jxB)+uV2w (2.43)

Ot

OB
= V x (u x B)+ r/V2B. (2.44)

Ot

In addition to these, we also have the non-dimensional relations:

_''U = O, CO = _7×U

V.B = 0, j = VxB. (2.45)

The equations (2.43), (2.44), and (2.45) define the basic equations needed here. If we set

r/ = u = 0, we obtain the equations of ideal magnetofluid turbulence. (The equations of

simple fluid turbulence arise if we set B = 0.)

Finally, boundary conditions remain to be specified. In general, if solid surfaces S with

local normal fi are present, then ft. uls = 0 for inviscid flow, while Uls = 0 for Viscous

flow. The magnetic boundary conditions depend on the conductivity and permeability of any

surface, and also require specification. However, we need not go into boundary conditions any

further, since we assume here and henceforth that any flow under consideration occurs in a

periodic box. Periodic boundary conditions will be satisfied using spatial Fourier expansions

of u and B, as will be seen in the next chapter.

2.5 References for Further Reading

Perhaps the best all-round book on fluids (with separate chapters on ideal fluids and turbu-

lence) is [Landau 87].

MHD is discussed by the same authors in [Landau 84, Chap. VIII].

A derivation of the MHD equations from the underlying plasma kinetic equation is found in

[Nicholson 83].

Boundary conditions on electromagnetic fields are discussed in [Jackson 75].

Suggestions for references on the subject of turbulence have been given at the end of the

previous chapter.
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There are many more books that deal with various aspects of fluids, magnetofluids, and

turbulence, as a library or net search will show. Some of these will be mentioned in the

chapters ahead.

Finally, a good mathematical reference, on Helmholz's theorem, among other topics, is

[Arfken 00].



Chapter 3

Fourier Representation

Here, it is assumed that the basic character of a given turbulent flow is invariant with respect

to spatial translation; such flow is termed homogeneous. Our principle concern is with the

behavior of the flow within an arbitrary region, far removed from any boundaries, somewhere

in a large extent of fluid. In particular, we assume the large region can be divided into boxes

and is periodic from one box to any adjoining ones. Alternatively, one can consider the

flow as occurring in an unbounded but finite space called a 2-torus, for 2-dimensional (2-

D) flow, or a 3-torus, for 3-dimensional (3-D) flow. In either case we have a finite area or

volume of space whose points are defined by position vectors x, where x = x_ + y:_ for two

dimensions, and x = x_ + y:_ + z2 for three dimensions (_, :_, i are unit vectors in the x,

y, z directions, respectively). The components of x take on values mod(27r), so that their

domains are 0 _< x < 27r, 0 _< y < 27r, and 0 _< z < 27r, which are suitable for examining

spatially periodic solutions of the non-dimensionM equations of motion.

For brevity, we will set X 1 : X, X2 : y, and x3 = z, as well as/_1 = _,/_2 = Y, and e3 = 2.
Then we can write

D

x= _-_ xi e_. (3.1)
i=1

Here, D = 2 or 3, signifying a vector in a 2-D or 3-D space, respectively. Also, 0 = (0, 0) or

(0, 0, 0), respectively, in 2-D or 3-D.

3.1 Discrete Fourier Transforms

Since there is periodicity in each spatial direction, we can represent the magnetofluid vari-

ables w and B, assuming sufficient smoothness, in terms of discrete Fourier series. We begin

by defining a finite set KDN of wave-vectors k (where I is the set of all integers):

D

k = _ki/_i, kicI, D=2or3
i=1

KN {k -N/2 <_ kj < N/2, j 1,...,D}. (3.2)D _ --

15
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(Typically, N will be a power of 2: N = 2m.)

Next, we define a finite set XDg of position vectors x with discrete coefficients xi =

2_¢ni/N:

X _"

271 D

ni 6i, ni E I, D -- 2 or 3
N

i----1

X N - {x I O<nj<_N-1, j=l,...,D}. (3.3)

The sets X g and K N enable the definition of finite, discrete Fourier transformations:

w(x) = _ 5_(k) e ik'x, xCX g

kEK N

(3.4)

B(x) = _ I3(k) e ikx, xEX N.

kCK N

The inverse transformations are

da(k) = N3 E co(x) e -ikx, kcK N (3.6)
xEX_ T

t3(k) = N3 _ B(x) e -ik'x, kcK N. (3.7)
xEX N

Relations (3.4) and (3.5) are said to transform the variables from k-space to x-space, and

(3.6) and (3.7) reverse this transformation.

In the above, it will be noticed that the number of discrete x-space points x C X N is

N D, while the number of discrete k-space points k E K_ appears to be (N + 1)D. However,

from (3.6) and (3.7) (and suppressing explicit time-dependence for brevity), it is clear that

¢b(k_) = ob(k i_) and t3(k__) = t3(k i_), i = 1,..., D (3.8)

where the k_: are defined for D = 3 by

k 1, = + N el -F k2e2 --Fk3e3
2

k_: = klel + N62 _-k3e3
2

(3.9)

(3.10)

N
k 3 = klel -4- k2e2 -I- 63. (3.11)

2

For D = 2, we use only (3.9) and (3.10), with k3 = 0.

Thus, due to (3.8) we have equivalent points k_ _ k i_, i = 1,..., D, in the set K_', so

that the number of independent points in k-space is decreased by one in each dimension.

The total number of points needed for invertible Fourier transformation is therefore N ° in
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both x-space and k-space. Note that (3.8) explicitly shows that the k-space representations

of the magnetotluid variables, as well as those in x-space, are periodic.

Also, it is important to note that values of x other than those defined by (3.3) can be used
yNin the Fourier transformations. Shifting all the x C l_ D by the same amount x -+ x+_ merely

multiplies the complex Fourier coefficient associated with k by a factor a(k) = exp(ik. _),

thereby changing the phase of the coefficient. Conversely, multiplying coefficients by c_(k)

allows the values of x not in X N to be determined. Thus, a truncated discrete Fourier

transformation is actually a continuum representation of a physical variable, although only

to the level of resolution allowed by the discrete number of k C KDN. The x E XDN may

be viewed as a set of sampling points of the continuum, sufficient to reproduce the values

at any point in the periodic space. The continuum nature of the representation also means

that spatial derivatives can be evaluated exactly: Vf(x) -+ ik ](k). This makes numerical

methods based on Fourier representations (whenever they can be applied) inherently more

accurate than finite difference methods, which have no underlying continuum nature.

In k-space, (2.45) becomes

k.fi(k) = O, ca(k) = ik×fi(k)

k. I3(k) = O, j(k) = ik × 13(k). (3.12)

Also, from the above, we may write

fi(k) = ik-2k × ca(k) and I3(k) = ik-2k × ](k). (3.13)

Obviously, k. ca(k) = 0 and k. j(k) = 0, because of (3.12).

Next, we consider information content in the real-valued variables u(x) and B(x), and

complex-valued variables fi(k) and t3(k). In 3-D x-space, there appear to be 6N a real values

(the 3 components of u and the 3 components of B at each discrete value of x), while in

3-D k-space, there appear to be 12N a real values (the 3 complex components of fi and the 3

complex components of t_ at each discrete value of k, taking (3.8) into account). Similarly, in

2-D x-space, there appear to be 4N 2 real values (the 2 components of u and the 2 components

of B at each discrete value of x), while in 2-D k-space, there appear to be 8N 2 real values

(the 2 complex components of fi and the 2 complex components of 1) at each discrete value

of k, again taking (3.8)into account). However, since u(x) [or equivalently, w(x)] and B(x)

are real-valued, it is evident from (3.6) and (3.7) that

ca*(k) = ca(-k) and 13*(k) = 13(-k). (3.14)

This reality condition reduces the number of components (real and imaginary) which may

be independent by half in 3-D k-space, to 6N 3, which is commensurate with the 6N 3 real

components in 3-D x-space. Similarly, the number of components (real and imaginary) in

2-D k-space is also reduced by half, so that only 4N 2 are independent, which is commen-

surate with the 4N 2 real components in 2-D x-space. In fact, the relations (3.14) are used

to minimize computer storage in subroutines which perform Fourier transformations of real
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variables, so that (3.14) are (almost) explicitly enforced in any computer simulation of ho-

mogeneous turbulence that uses Fourier transforms. (Almost, because for a small number

of k, coefficients for -k are also utilized in Fast Fourier Transform, or FFT, subroutines.)

There are further reductions possible in information content, which are easier to see in

k-space, than in x-space. First, a reduction is brought about by the solenoidal relations

k. fi(k) = 0 and k. I3(k) = 0 in (3.12). These solenoidality conditions reduce the number

of dynamically independent components of fi(k) and B(k) by an additional factor of 2/3 for

D = 3 and by a factor of 1/2 for D = 2. The 2-D vectors fi(k) and t3(k) can be represented

by exactly one complex function each, thereby explicitly incorporating the 1/2 reduction,

while in 3-D, the vectors fi(k) and 13(k) generally have three complex components each.

However, these three complex components are kimematically linked by (3.12), so that of the

three, only two are independent.

Using these observations, we see that in 3-D the number of independent real and imagi-

nary parts of either fi(k) or t3(k) is 2N 3 rather than 3N 3, for the N 3 independent k C K N,

while for 2-D, this number is N 2, equal to the N 2 independent k E K W. However, we do not

need to use all of the possible k E K_; we can instead algorithmically include only those =kk

from a chosen subset 5' C K_. The structure of possible subsets S C K N will be further

discussed after an examination of the form of the dynamical equations in k-space.

Evolution Equations in k-Space

3.2.1 Three-Dimensional Equations

The evolution equations of vorticity and magnetic field in k-space are found by placing (3.4)

and (3.5) into (2.43) and (2.44). The result is, using the independence of the e _kx,

d&(k) = S(fi, d_;k) + S(j,B'k)- uk2c2(k)
dt '

(3.15)

dI3(k) = S(fi, t3;k)- 7/k213(k).
dt

(3.16)

Here, the nonlinear terms denoted by S are vector convolutions:

p+q=k

S(fi, t_;k) _-- ik x _ [fi(p) x t_(q)]. (3.17)
k,p, qCS

The double summation _--_p+q=kk,p, qES in (3.17) is over all wave-vectors p and q that satisfy

p + q = k, where +k,+p, +q C S C K N.

Thus, Fourier coefficients, such as fi(k), are associated only with a finite number of
IN

k C S c /(D, and not with all k E K N. Notice that, using (3.17), the right sides of (3.15)

and (3.16) are identically zero for k = 0. Thus, we may set fi(0) = 0 by Galilean invariance

(a value it holds for all t), while the constant value of t3(0) may be chosen to be zero or
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nonzero to reflect the absence or presence of an externally imposed mean magnetic field. In

order to ensure homogeneity, we set 5_(0) = 0 to reflect no overall rotation in the fluid. Also,

since k. S(fi, I3; k) = 0, then, if (3.12) holds initially, (3.15) and (3.16) show that it will hold

for t > 0.

The right side of (3.17) contains a vector triple-product that can be expanded as

p+q=k

S(fi, t_;k) = i _' kx [fi(p)×I3(q)]
k,p, qE$

p+q=k

= i E [P" t_(q)fi(p) - q. fi(p)t3(q)]. (3.18)
k,p,q E8

The last step follows from k = p + q and the solenoidality (3.12) of fi and t_. If p and

q are collinear, then, for example, q-fi(p) _ p. fi(p) = 0, and these wave vectors do not

contribute to the right side of (3.18). Thus, in order to have a nonlinear interaction between

modes with wave vectors p, q C S, we must have p x q _ 0.

The 3-D vector convolution sums S defined in (3.17) can also be written as

S(fi, 13; k) = C(k). {_(fi, I3; k),

where the dyadic C(k) and the vector (_ are defined by

ei" C(k). 6j = Cij(k) = ieimjkm (3.20)

p+q=k

{_(fi, 13;k) = _ fi(p) × I3(q). (3.21)
k,p, qC$

3
Here, the summation convention is used: eimjk,_ = _m=l eimjk,_, so that repeated indices

imply a summation. The {ijm are the components of the completely alternating tensor, or

Levi-Civita symbol, which is defined by

(ijk =

,

--1,

O,

if (i,j,k) are cyclic permutations of (1,2,3)

if (i,j,k) are anticyclic permutations of (1,2,3)

otherwise.

(3.22)

In addition to the curl operator C(k), there are several other important dyadics. The

first of these will be denoted by P(k). It arises when we use (3.13) together with (3.12), to

get

fi(k) = ik-2k x &(k)

= -k-2k × [k x fi(k)]

= -k -2 [kk-fi(k)- k2fi(k)]

= P(k).fi(k). (3.23)
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This projection operator P(k) is the dyadic defined by

kk kikj (3.24)
P(k) - I- k2 --_ Dij -- _ij - k2 •

Here, the second important dyadic is I, which is the identity operator. Next, we define the

adjoint curl (or 'uncurl') operator C(k)"

C(k) = k-2C(k). (3.25)

The projection, curl and adjoint curl operators satisfy

k P(k)

k C(k)

k C(k)

P(k) P(k)

C(k) P(k)

C(k) P(k)

C(k) C(k)

C(k) C(k)

C(k) C(k)

P(k)-k = 0

C(k)-k = 0

C(k)-k = 0

P(k)

P(k)-C(k)

P(k)-C(k)

C(k). C.(k)

k2P(k)

k-2P(k).

= C(k)

= C.(k)

= P(k)

(3.26)

Note that C(k) is not quite the inverse of C(k).

We can use the operators just defined, to rewrite (3.13) as

fi(k) = C(k). &(k) = -¢b(k). C(k) (3.27)

13(k) = C(k).j(k) = -j(k). C(k) (3.28)

and also to rewrite (3.15) and (3.16)as

d&(k)
dt = C(k). [(_(fi, 53; k) + Q(j, B; k)] - uk2d_(k) (3.29)

dI3(k) = C(k). (_(fi, t3;k) - rlk213(k). (3.30)
dt

Now, we can apply C(k) to (3.28) to arrive at a definition of the k-space stream vector £b

and magnetic vector potential A"

¢(k) = ¢(k). fi(k) = k-2cb(k) (3.31)

._(k) = C(k).I3(k) = k-2j(k). (3.32)
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Using (3.32 and (3.28), along with (3.21) and (3.26), and applying e(k) to (3.29)and (3.30)

gives

dfi(k)
= P(k). [l_(fi, ¢b; k) + Q(j, B; k)] - _,k2fi(k) (3.33)

dt

dA(k)
= P(k). Q(_, t_; k) - Vk23_(k). (3.34)

dt

Equations for ¢ and j could be similarly generated, if desired.

It has already been mentioned that the magnetic field may contain a nonzero component

l)(k) for k = 0. Let the constant mean magnetic field be Bo = I3(0), and let l_(k) = t3(k)

for k ¢ 0, with 1_(0) = 0, so that (3.21) becomes

(_(fi, I3; k) = Q(fi, l_; k) + fi(k) x Bo.

Also, we will define g_(k) = ik-2k x t_(k) = k-2j(k). Since j(0) = 0, then Q(j,B; k) can

be obtained by letting fi --+ j in (3.35). These results allow the evolution equations (3.29),

(3.30), (3.33), and (3.34) to be written

d cb(k)

dt
= C(k). [Q(fi, 5_;k)+Q(j,b;k)]

+ i(k. Bo)j(k)- L,k2_(k) (3.36)

dl_(k)

dt

dfi(k)

dt

= C(k). (_(fi, 1_; k) + i(k- Bo) fi(k) - rlk21_(k).

= P(k). [Q(fi,_;k)+Q(j,b;k)]

+ i(k. Bo)l_(k) - _,k2fi(k)

(3.37)

(3.38)

dfi(k) = P(k). Q(fi, !_; k) + i(k. Bo) ¢(k) - r/k2fi(k).
dt

(3.39)

Many more equations can be generated through the application of C(k) and C(k) to these

equations. However, for our purposes here, the above will be sufficient.

3.2.2 Two-Dimensional Equations

The equations (3.36), (3.37), (3.38), and (3.39) are fully three-dimensional but can be reduced

to a 2-D form as ibllows. In 2-D x-space, (2.45) allows us to write vorticity and current as

w(x)=w(x)i and j(x)=j(x)/, (3.40)
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where x = x:_ + y:_. In 2-D k-space, using (3.12), (3.31), and (3.32) leads to the following

relation between Fourier coefficients:

d_(k) = &(k)i = k2¢(k)i = k2_(k) (3.41)

j(k)- )(k)i = k25(k)i - k2_(k) (3.42)

where k = k_ + ky2, ¢ is the scalar stream function and 5 is the scalar magnetic potential.

In the 2-D case, (3.13), along with (3.41) and (3.42), leads to the following expressions for

the velocity and magnetic fields in k-space:

fi(k)-ikx_¢(k) and b(k)=ikxiS(k). (3.43)

Thus there is exactly only one independent complex component in fi(k) and one in l_(k),

a reflection of the fact that they are 2-D solenoidal vector fields. A 2-D magnetofluid can

thus be described by ¢(k) and _(k), whose evolution equations follow from equations (3.43),

(3.36), and (3.39):

p+q=k

d&(k) = i _ i-pxq[_(p)&(q)+_(p)_(q)]
dt

k, p, q CS

+ i(k-Bo))(k)- uke&(k) (3.44)

dS(k) p+q=k
dt = -i _ /:-p×q¢(p)_(q)

k,p, qES

+ i(k. Bo)¢(k) - 7/k25(k). (3.45)

Here, we have used &(k) = k2¢(k) and )(k) = k25(k), as given in (3.41) and (3.42). Since p

and q are 2-D vectors, p x q = (Pxqy - pyqx)i and i • p x q = Pxqy - Pyq_. Also, remember

that the double sum in (3.45) is over all p and q such that p + q = k and k, p, q C S C K N.

As in the 3-D case, equations (3.44) and (3.45) clearly indicate that only wave vectors p and

q such that p x q _ 0 can interact nonlinearly and thereby affect the time-evolution of the

Fourier mode k.

3.2.3 Alfv6n Waves

Here we consider the dynamical equations when Bo is relatively large. Let us define the

Alfvdn frequency for a mode k as

((k) _= k. So. (3.46)

In the 3-D case, if all the terms on the right sides of equations (3.37) and (3.38) except the

terms containing ((k) are dropped, these equations become

d l_(k)
= i((k) fi(k) (3.47)

dt
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dfi(k)
= i ¢(k) l_(k).

dt

These can be combined into one linear, second-order differential equation:

d 2
f,/_,kkj = _(2(k )i_(k)
dt 2

which has two solutions:

[)(+)(k) = b(+) (k) exp[-+-i((k)t].

Using (3.47) produces the corresponding velocity coefficient solutions:

fi(±)(k) = -+-l_(+)(k).

The x-space waves corresponding to these Fourier coefficients are

b(±)(x,t) = +u(+)(x,t) = 1_(o+)(k) exp[ik-(x + Bot)].

(3.48)

(8.49)

(3.51)

5(o+)(k) exp[ik. (x + Bot)].

(3.54)

Although, in general, Alfvdn waves may lose their individual identities in the presence of

nonlinearity, some remnants of Alfv_n wave-like behavior may persist in MHD turbulence.

In fact, this will be apparent when numerical results are presented in a later chapter.

Alfv4n wave solutions in k-space:

5(+)(k) = 4-¢(±)(k)

The corresponding x-space equations are

a(+)(x,t) = +¢(+)(x,t)

= 5(+) (k) exp[+i¢(k)t].

The linear waves b(+)(x,t) = +u(±)(x,t) are called Alfvdn waves. Furthermore, the waves

b(-)(x, t) and u(-)(x, t) propagate in the direction of the corresponding k, with speed Bo,

while b(+)(x, t) and u(+)(x, t) propagate in the opposite direction at the same speed. In the

linear approximation, Alfvdn waves do not interact, but if Bo is no longer 'large,' then they

do interact, in which case Alfvdn waves may lose their individual identities.

The linear analysis above produces pairs of solutions b(+)(x,t) and u(+)(x,t), which

are coplanar. Thus, these results go over directly into the 2-D case, where the equations

corresponding to (3.47) and (3.48) come from the linearization of (3.44) and (3.45), with

= r/= 0. Using (3.43), (3.50), and (3.51), along with and (3.41), yields the ideal 2-D MHD
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Interacting Fourier Modes

In the previous section, nonlinear evolution equations for the Fourier modes _b(k) and l_(k)

were developed, for both the 2-D and 3-D cases. Once we choose a grid size for a numerical

simulation, we have a finite number of k E KDN to choose from; in fact, we choose +k E
zN

S C E D , and the choice of $ is essentially arbitrary. For example we could choose to work

with only one k = kl # 0 (and -k, of course), setting the Fourier modes associated with

all other k E ,.q C KDN equal to zero. In this case, only the mode associated with +kl is

time advanced, but there is no nonlinear evolution, since all other modes are frozen with

zero values. This is, of course, a trivial case, but there are many other possible subsets $ of

KDN that can be chosen. The simplest nonlinearly interacting system is one associated with

a subset of K N containing three wave vectors (and their negatives). All other interacting

subsets of K N will be unions of these basic interacting triads.

However, choosing one or an arbitrary union of interacting triads may impose an un-

wanted anisotropy on the model system, if what is really desired is to have a set of wave

vectors which give no intrinsic directionality to the model system. Restricting the choice of

a subset $ of K_ so that no particular direction in space is favored is called an isotropic

truncation. In what follows, we specifically discuss these two choices: interacting triads and

isotropic truncation.

3.3.1 Interacting Triads

The basic nonlinear interaction in ideal turbulence is quadratic, as was seen explicitly in

the last section. In terms of nonzero wave vectors k, p, q E K N, D = 2, 3, Fourier modes

associated with nonzero wave vectors +k, +p, ±q can nonlinearly interact only if they form

a fundamental interacting triad: k = p + q, where p x q _= 0. These are the minimal

interacting subsets of the K N (any other interacting subset is a union of these fundamental

subsets).

An interacting triad 7- C K N thus consists of three independent wave vectors k, p, q E

I(gT.

T = {+k,+p,+q}

k = p+q, pxq#0. (3.55)

Note that, because of (3.14), we must have both a wave vector and its negative in T (however,

remember that k and -k identify the same mode). Also, note that although T has wave

vectors that satisfy k = p + q, it does not contain k' = p - q. If a model system were to

include only modes associated with wave vectors in T, then only these would advance in

time and all other modes would remain zero, having been set so initially. (In atmospheric

science, truncation of a buoyant fluid model to three modes led to the well-known Lorenz

attractor.)

Using the definition, (3.55), consider the two sets of interacting triads Ti and T2:

711 = {-t-kl, ±Pl, +ql}
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T2 = {+k2,+p2,4-q2}. (3.56)

If T1 n T2 = 0, then the subsets T1 and T2 do not interact with one another. However,

assuming that at least one independent wave vector in T1 is equal to one in T2 (for example,

pl = p2), then the subset $ = T1 tJT2 is also a set of interacting wave vectors which contains

T1 and T2:

$ = {-t-ki,+pi,+q/ l i = 1,2} (3.57)

For example, consider the following interacting triads of 2-D wave vectors:

T1 = {+(1,0),+(0,1),-t-(1,1)}

= {+(1,0),+(0,1),

T3 = {+(2,1),+(1,1),+(1,0)}

= {+(2,0),±(0, 2),+(2,2)} (3.58)

The first three triads, Ti, i = 1, 2, 3, share common elements and pair-wise unions of any two

of them will yield larger subsets of interacting wave vectors. However, T4 N T/= 0, i = 1, 2, 3,

so that any union $i = T4 tJ T/, i = 1, 2, 3 will consist of two non-interacting triads, rather

than a fully interacting subset. In this last case, T4 and any of the T/, i = 1, 2, 3, though

formally united, evolve independently of one another.

We can thus use the subsets T/c K N (with N > 2) of interacting triads to define larger

sets, N1 and ,92, such that $1 A ,92 = 0. These two sets $1 and $2 do not interact with one

another, and if there are no other interacting sets allowed in the numerical simulation which

would link them, then they will evolve independent of one another. For N >_ 2, any nonzero

k c K g can always be written as k = p + q, with nonzero p, q C K N, where p and q satisfy

pxq#0.

To show this, consider a nonzero, 3-D wave vector: k = kz_ + kyjr + kzi. If at least two

of the ki, i = x, y, z, are definitely nonzero, say k_ and ky, then we can immediately write:

p=kx_, q=kv_,+kzi -+ k=p+q. (3.59)

Here we have p2, q2 < k 2 and p x q = -kxkz_ + k_kyi 5£ O.

If only one of the ki, i = x, y, z, is nonzero, and the other two are zero, say kx = +_c

(_ > 0) and ky = kz = 0, so that k = +_:_, then we have two cases:

p= (_c-1)_+:_, q= _-:_k=p+q (kx= _c>0)

p = (-_c + 1)5- :Y, q = -:_ +?? --+ k = p+q (kx = -_ < 0).

(3.60)
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In both cases (kx = +_), we have p2 = k2 _ 2(_- 1), q2 = 2, and p x q = -hi # 0. Here,

if_>l, thenp2 q2<k 2=_2,whileif_=l,wehavep2=k 2=1<q2=2.

3.3.2 Isotropic Truncation

If we were to pick an upper limit to the magnitude of a wave vector, say kraax, where

k2ax > 2, then the results (3.59) and (3.60) indicate that any vector k that satisfies k 2 <

k2max < (N/2) 2, can be decomposed into two wave vectors p and q, such that k = p + q,

, 2with p2 q2 _< kma_" This gives us another type of subset, K: C KDN (N = 2 M > 2), which

also has all triads linked together. Thus, the isotropic truncation of KDN produces

2
)U = {klk e K N, k 2 <_ kma x < (N/2)2). (3.61)

In defining K: by (3.61), we have constrained the number of dynamically important k so as

to avoid imposing any initial anisotropy. We have isotropically truncated the domain of k

by using only those Fourier components with wave-vectors k lying on or inside the sphere

defined by k __ kmax < N/2. All coefficients with k > kmax are set to zero and kept there

during numerical simulation (i.e., after every time-step). Only coefficients with k <_ kma_

are allowed to evolve according to the algorithm used to define the numerical simulation.

The fact that we set kma_ < N/2 is a small but important point. Consider the Fourier

modes corresponding to kl = (N/2, 0, 0) (and to k2 = (0, N/2, 0) and k3 = (0, 0, N/2)).

Using x as given by (3.3), we have eikj x = (--1) nj, j = 1, 2, 3, SO that modes determined by

(3.6) and (3.7) are purely real for k = kj, j = 1, 2, 3. A spatial derivative of such a component

corresponds to multiplication by ik, which transforms the real part of the component into

an imaginary one, and the imaginary part (which is zero, in this case) into a real part. Thus,

the Fourier mode of a derivative associated with one of the kj, which is also purely real,

is identically zero. Since the evolution of Fourier components is a function of their spatial

derivatives, any interacting set of wave-vectors should exclude the kj, j = 1, 2,3 (as well as

such wave vectors as k4 = (g/2, g/2, 0), etc.).
2

The number of k within an :isotropic' 2-D circle is approximately equal to M2 _ 7rkma _,

and within an 'isotropic' 3-D sphere is approximately equal to M3 _ 4_k_/3. More

precisely,/1//2 and M3 are given by

1, if a>0
MD = _ H(kmax-k), D=2,3, H(a)= 0, if or<0.

k6K_

(3.62)

Since MD is the total number of Fourier vector modes actually utilized, and since there is one

independent component per k in 2-D and two in 3-D, then the total number of independent

components per physical field (u or B) is, in 2-D,/1//2, and, in 3-D, 2M3.

Clearly, the total number of independent components in the Fourier modes k C K_ used

to represent each physical field is reduced by isotropic truncation (3.62). In 2-D k-space,
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this reduction is to F2, and in 3-D k-space, to F3, where

2
F2 = 3/2 _ 7rkmax < 7rN2 (3.63)

4

8 3 7r N3" (3.64)
F3 = 2/'i43 _ 37rkmaz < 3

The actual value of Fo depends on the choice of kmaz, which is set by computational con-

straints. However, note that the sums (3.4) and (3.5) can still be taken over all N ° modes

k because those coefficients with k > kmax have values defined algorithmically as zero.

Ideal Integral Invariants

If u = T/ = 0 in the evolution equations, then there exist certain integral invariants which

are analytical constants of the motion. They are termed 'integral invariants' because they

are integrals over the physical space of various bilinear forms. For example, an integral that

may be invariant is

1

f u(x)-b(x) dDx, D = 2, 3. (3.65)(u,b) = (27r)D

If we use Fourier transforms similar to (3.5) for u and b, then (3.65) becomes

1/(u,b) = (27r)D
fi(k') e ik''X

kICKD N

= y_ fi(k'), l_(k) 1
k,k, EK N (27r) D f

= _ fi(k'), l_(k) 5(k + k')

k,k_EK_

= y_. fi(-k)-l_(k)

kCK N

= _ fi*(k) • I_(k),

kEK_ _

y_ l_(k)e ik'x
kEKD N

ei(kt+k) "x dDx

dDx

D = 2, 3. (3.66)

Above, the Dirac delta function is

1 f e i(k'+k)'x dDx. (3.67)5(k+k') = (27c)D

Although we started from the integral (3.65) over a continuous x-space, we could also have

started with a summation over the discrete x-space (3.3), and defined

1

(u,b) = ND y_ u(x).b(x), D = 2, 3. (3.68)
XCXDN
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Then, using transforms similar to (3.5) again, along with the KrSnecker delta

1

5k, k' = hT D Z ei(k'+k)'x' D= 2,3, (3.69)
XGXD g

would have led once again to the result in (3.66). Although we could now use the term

'summation invariant,' we will stick to the more standard term of 'integral invariant.'

When _, = r/= 0, the integral invariants that are found in the magnetofluid equations

depend on the specific type of flow that is under consideration. First, the flow may be 3-D

or 2-D. Then, a flow with B _= 0 for all time is called an Euler flow, and with B ¢ 0, it is

called an ideal MHD flow. Finally, an ideal MHD flow may have Bo = 0 or Bo _ 0. Thus,

there are six different types of flow, and they have different sets of integral invariants. These

six different cases will now be discussed.

3.4.1 3-D Invariants

There are three different cases here: 3-D Euler invariants, 3-D ideal MHD (IBot = Bo = 0)

invariants, and 3-D ideal MHD (Bo = 1) invariants. [Normalization: In the Euler cases, u

is usually initialized so that (u, u) = 1, while in the ideal MHD cases, u and b are typically

initialized so that (u, u) + (b, b) = 2, where (.,-) is defined by (3.65), (3.66) or (3.68).]

3-D Euler Invariants

If we categorically set B(x, t) = 0 for all t, then we reduce the number of equations by half.

In this case, (3.36) and (3.38) become the following:

d 5_(k)
= C(k). l_(fi, ¢b; k) - L,k2cb(k) (3.70)

dt

d fl(k)
= P(k). l_(fi, ¢b: k) - yk2fi(k).

dt
(3.71)

If we take the dot product of (3.71) with fi*(k), we get

dfi(k) = fi*(k)-(_(fi, cb;k)- _k 2 fi(k) 2.
fi*(k), dt (3.72)

Now, if we change k -_ -k in (3.72), add the resulting equation to (3.72), and sum over k,

we get

keSE [ d Ifi(k)12dt + 2 _ k 2 fi(k)2] = T(fi, ft.5_)., (3.73)
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Here, using (3.21), the triple-product summation T is defined by

T(fi, fi, d_) = _ [fi*(k)-(_(fi,_;k)+fi(k)-(_*(fi, cb;k)]
kE$

= 2Z ,:,(k)• k)
kE,S

k+p+q=O

= 2 _ fi(k).fi(p) x _(q)
k, p, q E,S

k+p+q----O

= _ [fi(k) × fi(p)+ fi(p) × fi(k)]. _(q)
k,p, qE$

= 0. (3.74)

_--_k+p+q=0The triple summation k,p, qC$ is the summation over all wave-vectors k, p, q such that

k + p + q = 0 and +k, +p, iq C $ C K N. We have exercised the option of changing the

dummy index k --_ -k in the second step above, and used the fact that the summation on

the right side can be made symmetric over k and p (and q also, if necessary). Thus, from

(3.73) and (3.74) we have, using the equivalence k 2 fi(k) 2 = I_(k) 2,

dEK
= -2 u f_. (3.75)

dt

Here, kinetic energy EK and the enstrophy f_ are defined using (3.66)"

1

EK ------ 2 (u,u) (3.76)

1 (w, w). (3.77)
_ --- 2

If u = 0, it is clear that EK is a constant of the motion, i.e., invariant. If u ¢ 0, then, since

>_ O, EK always decreases, unless _ -- 0, in which case E_: = 0, also.

Next, if we take the dot product of (3.71) with _*(k), and take the dot product of (3.70)

(after changing k --+ -k), with fi(k), use fi(k). C(k)(-k) = _(k), add the two equations,

and sum over k, we get

[d fi(k).¢b*(k) + 2uk2fi(k).dj,(k)l = T(w u, dJ).E
kCS ,. dt .

(3.78)

Here, as we did in (3.74), we again partially symmetrize the triple-product sum on the right

side:

k+p+q=0

T(w, u,_) = y_
k,p, qE$

0.

[5a(k) x _(q)+ ¢b(q) x ¢b(k)]. fi(p)

(3.79)
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Thus, (3.78) becomes

dHK
= -2_Hv. (3.80)

dt

The kinetic helicity HK and (giving it a name) the vortical helicity Hv are defined, again

using (3.66):

HK-- 2

_ 1 (w,V x w). (3.82)
Hv = 2

In the 3-D Euler case, HK is the second integral invariant. (Neither HK nor Hv are positive-

definite.)

In the present case, there are no other bilinear integral invariants because, looking at

(3.74) and (3.79), it is clear that in order for the triple-product summation

k+p+q=0

T(u,v,w) = _ fi(k). 9(p) × _b(q) (3.83)
k,p, qE$

to be equal to zero, at least two out of the three vectors fi, 9, & must be equal (up to

a constant factor). Another way of saying this is to note that, by (3.83), T(u,v,w) is

antisymmetric in its arguments:

T(u,v,w) : -T(v,u,w) : -T(u,w;v). (3.84)

Thus, if fi and ¢b are fixed, there are only two choices for v such that T(u, v, w) = 0: either

9 = fi or 9 = ¢b. As we have just seen, these choices lead, respectively, to the two invariants

EK, defined in (3.76), and HK, defined in (3.81).

3-D Ideal MHD Invariants

In this case, B _ 0, and we have 3-D ideal MHD flows when _ = _ = 0. If we take the dot

product of fi*(k) with (3.38), then the result of this, added to its complex conjugate, gives

[d fi(k) 2
kE$ dt

]

+ 2 i(k. Bo)fi* (k). l_(k) - 2 _ ¢b(k) 2/
.J

= T(fi, fi,_) + T(fi, j,b). (3.85)

Similarly, if we take the dot product of l_*(k) with (3.37), then the result of this, added to

its complex conjugate, gives

- 2i(k-Bo)fi*(k). l_(k) - 2 _ j(k) 2]

= T(j, fi, 1_). (3.86)
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Adding (3.85) and (3.86), and using (3.84), gives

dE
= -2 (. + d). (3.87)

dt

In the above equation, _ is given by (3.77), the total energy E is a sum of kinetic energy

EK, given by (3.76), and magnetic energy EM, while J is the mean-square current. We have

E = EK+EM (3.88)

1

EM = 2 (b,b) (3.89)

1

J = 2 (j'j) (3.90)

It is clear from (3.87) that E, as given by (3.88), is an integral invariant for u = 7/= 0.

Next, take the dot product of b*(k) with (3.38), add this to the dot product of fi(k) with

the complex conjugate of (3.37), and use (3.84) to produce

dZ dt
k E,S

Defining the cross helicity Hc as

allows (3.91) to be rewritten as

+ (_ + _/)k 2] fi(k). l_*(k) = O. (3.91)

1 (u, b) (3.92)
Hc= 2

d Hc
= -(u+_)Hc. (3.93)

dt

The cross helicity is obviously an integral invariant for 3-D ideal MHD, where _ = 7/= 0.

Notice that E in (3.88) and He in (3.92) are integral invariants for ideal MHD for both

Bo = 0 and Bo # 0. Keeping this in mind, the result of taking the dot product of _* (k) with

(3.37), and adding this to its complex conjugate, again using (3.84), is

dt + g*(k) = So) -a*(k).
(3.94)

Defining the magnetic helicity HM as

1 (a, b) (3.95)
HM = 2

we see that HM is an integral invariant in 3-D ideal MHD, but only if Bo = 0.

There are no other bilinear invariants for 3-D ideal MHD, and the absence or presence

of a nonzero mean magnetic field splits 3-D ideal homogeneous MHD turbulence into two

cases: If Bo = O, E, Hc and HM are ideal invariants, while if Bo # 0, only E and He are

ideal invariants. We mention again that E, Hc, and HM, as well as k-fi(k) and k. B(k),•

are zero only to machine accuracy.
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3.4.2 2-D Invariants

There are also three different cases here: 2-D Euler invariants, 2-D ideal MHD (IBol = Bo =

0) invariants, and 2-D ideal MHD (Bo = 1) invariants.

2-D Euler Invariants

As in 3-D flow, there is no magnetic field present at all in this case. Let us examine (3.44)

with j = _ = 0:

p+q=k

d&(k) = i E i'pxq¢(p)&(q)-uk 2_(k). (3.96)
dt

k, p, q E,S

If we multiply this equation by ¢_ = k n ¢*(k), add the result to its own complex conjugate,

and sum over k E $ C K N, we get

dt + 2 uk 2 k n+2 ]_(k) 2 = 0(¢,¢,w), (3.97)
kCS

where

k+p+q=0

0(¢,¢,w) -- 2i _ _-p×qq_(k)_(p)&(q). (3.98)
k,p,q E$

In the summation above, the indices k, p, and q are dummies and can be interchanged freely

to yield relations similar to (3.84)"

0(¢, = -0(¢, = ¢). (3.99)

The triple summation 0(¢,¢,w) = 0 if ¢ = ¢ or ¢ = w, that is, if n = 0 or n = 2,

respectively. Then, for u = 0, (3.97) indicates that the following (and only the following)

are ideal invariants for 2-D homogeneous Euler turbulence:

EK -- 1 k2 2 _ 1 E lfi(k)l 2 (3.100)
2 _ ¢(k)l - 2 keS

kCS

1 2 _ 1 E a(k)l 2 (3.101)
2 keSEk4 ¢(k) - 2 keS

Again, EK is the kinetic energy and t2 is the enstrophy.

Kelvin's Theorem

The x-space equation corresponding to (3.96) with u = 0 is

dw Ow
= +u. Vw = 0.

dt Ot
(3.102)
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This equation tells us that the vorticity of each fluid element is conserved in 2-D ideal flow as

it is convected about the flow region. This is Kelvin's circulation theorem. Since dw/dt = O,

we also have

w__ l dw _- dw _ -- 0, a_>l, (3.103)
dt dt

so that any non-negative power of w associated with a fluid element is also conserved as

that element moves around. (We require a _> 1 so that (3.103) is defined for all finite w,

including w = 0.) Thus, the integral of w _ over the flow region (here, a periodic box), is also

conserved, for any a > 1"

Is = ff w _ dx dy = const. (3.104)

If a is drawn from the set of real numbers greater than or equal to one, (3.104) appears

to imply that there are an uncountable infinity of integral invariants for 2-D Euler flow.

However, if we restrict ourselves to a periodic domain, then a must be a positive integer, so

that the number of invariants is, in fact, denumerable. As we have just seen, only the case

with a = 2 actually leads to a non-trivial invariant in a finite Fourier representation. Such

a quantity is often referred to as a 'rugged invariant.'

The reason that Kelvin's theorem does not appear to carry over is three-fold. First,

Kelvin's theorem essentially states that the vorticity of each fluid point, and thus all powers of

vorticity of each fluid point, are conserved in a 2-D ideal fluid. This is a statement concerning

the continuum and is not commensurate with the fundamental nature of a discrete Fourier

representation. Second, Parseval's identity guarantees only the equality of ft, as defined in

k-space by (3.101), and h, as defined in x-space by (3.104). Third, as will be seen in the next

chapter, the w(k), in a numerical simulation, essentially comprise a set of random variables

with a normal probability distribution. For such a set of random variables, the expectation

values (hn-1) _-_ 0, while (/2n) _" (2n- 1)!! (h) _, for n = 1,2,3, .... Also, as n -_ oe,

fluctuations in I2_ are found to grow exponentially. Thus, only f_ = 12 can be expected to

behave like an invariant, either analytically or computationally - a truly rugged invariant.

In a sense, the (I2n), n > 1, are also 'invariant,' since they are proportional to (I2) _, but

their fluctuations are so great that they cannot be considered 'rugged.'

2-D Ideal MHD Invariants

In order to determine the integral invariants for 2-D ideal MHD, multiply (3.44) by _(k),

multiply the complex conjugate of (3.45) by q_2(k), add the resulting equations, and sum

over k C K N to get

[(_(k) deS(k) + q_2(k)d&*(k)]
kES dt dt

1

2 [0(q_l'_)'C0)-t-O(_)l,j,a)+0(_b2,_,a)]
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+ y_. ik. Bo D(k)q_(k) - q_2(k)_*(k)]
kES

- _ k 2 [u _(k) q_ (k) + r/q_2(k) _* (k)].
kES

(3.105)

A choice of functions Ca and ¢2 will produce an invariant only if the left side of this equation

is a perfect differential and if the right side vanishes for u = _ = 0.

There are only three choices: 1) ¢1 : ¢, ¢2 --- j; 2) ¢1 -- a, ¢2 = w; and 3) ¢1 = 0, ¢2 = a.

The first choice (¢1 = ¢, Ce = j) yields (3.87), so that the total energy E = EK + EM is an

ideal invariant for 2-D MHD. Here, EK and _ are defined by (3.100) and (3.101), while EM

and J are defined by

E M

J

1 k2 22 Z a(k) =
kES

1 k4 22 E a(k) =
kES

1 22 _ [t_(k) (3.106)
kGS

1 122 _ Ij(k) . (3.107)
kES

The second choice (¢1 = a, ¢2 = w) yields (3.93), so that the cross helicity He is also an

ideal invariant for 2-D MHD:

1 &, 1
He = 2 _ (k) &(k) = _ _*(k))(k). (3.108)

kES 2 kE,S

The third choice (¢1 = 0, ¢2 = a) yields

dA

dt = y_ ik. Bo_* (k) ¢1 (k) - 2 _ EM, (3.109)
kES

where A is the mean square magnetic potential:

1

A = 2 y_ I_(k)]_ (3.110)
kE8

It is clear from (3.109) that A is an ideal invariant in 2-D MHD, but only if Bo = 0.

To summarize the results for ideal 2-D MHD, E, He and A are integral invariants when

Bo = 0, but only E and Hc are ideal invariants when Bo _: 0. We now have at hand the

integral invariants for the six different types of ideal, incompressible, homogeneous turbu-

lence, and we will use these in the development of the associated statistical theory. Again,

it must be stressed that these integral invariants are 'constant' only to machine accuracy

during a numerical simulation. Although fluctuations may be slight, they allow the develop-

ment of a useful statistical mechanics, which describes the behavior of computer models of

ideal homogeneous turbulence, and hopefully has some relevance to more realistic models of

turbulence and ultimately to real-world turbulence itself. It is the basics of this statistical

mechanics that we develop in the next chapter.
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References for Further Reading

Discrete Fourier transforms are covered in detail in [Hamming 86] and in [Bracewell 86].

The energy is a well-known classical invariant for any conservative physical system. Other

invariants for ideal homogeneous fluid and magnetofluid turbulence were recognized more

recently: _ [Kraichnan 75], HA-[Betchov 61], He [Woltjer 58], HM [Els_isser 56], and A

[Fyfe 76].
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Chapter 4

Statistical Mechanics

The evolution of the Fourier modes introduced in the last chapter is determined by sets of

first-order, nonlinear ordinary differential equations which couple components of different

wave vectors k to one another. The coupling is highly nonlinear, the various Fourier com-

ponents are observed to behave stochastically and so must be considered random variables.

This suggests that a statistical description of the multidimensional dynamics of turbulence

is required. Although a statistical theory has been elusive for real, dissipative turbulence, it

is possible for computer models of ideal turbulence and follows rather straightforwardly from

the principles of classical equilibrium statistical physics. The novelty of ideal turbulent flows

is that several integral invariants exist and must be utilized, whereas in classical statistics

only the energy is needed.

Our particular goal is to develop a statistical mechanics that allows us to analytically

predict expectation values of moments of random variables and to compare these predictions

with the results of a numerical solution of the equations of motion. In fact, our statistical

theory must take into account the approximations inherent in computer simulation, specif-

ically fluctuations during a numerical solution due to time-step size and round-off error.

These fluctuations actually bring the statistical behavior of a computer model closer to that

of a realistic physical system. A mesoscale physical system may be generally thought of

as a small part of a larger 'heat bath,' and a computer model may similarly be viewed as

a small system embedded in a computer, which serves as its heat bath. In equilibrium,

the interaction between a 'small system' and 'heat bath' is only through fluctuations, and

the statistics of such a small system are best described in terms of canonical, rather than

microcanonical ensembles. In addition to being the most appropriate, a canonical ensemble

distribution function can be more readily used for actual calculations. Historically, the use

of canonical ensembles to give a statistical explanation of ideal homogeneous turbulence was

given the name absolute equilibrium ensemble theory. It is this theory that we develop in

this chapter.

37
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Turbulence as a Dynamical System

Each of the independent real and imaginary parts of the velocity and magnetic field com-

ponents fi(k) and I_(k) can be associated with the components of a single, time-dependent

vector v(t) in a higher dimensional space, called a phase space and denoted by F. The phase

vector v defines the location of a phase point, which completely describes the instantaneous

state of the system under investigation. (Although this could have been done using x-space

grid point values, along with the equations of motion in finite difference form, here we choose

to work in k-space, as the essential dimension of the phase space is manifest, among other

benefits.) In the last chapter, we transformed the equations of motion of a magnetofluid,

from x-space into k-space. This effectively created a nonlinear dynamical system to serve as

a mathematical model of a magnetofluid.

For homogeneous turbulence, the dimension nd of the dynamical system follows from

(3.63) for 2-D flows, and from (3.64) for 3-D flouts. In 2-D, we use the complex scalar

functions c_(k) and 5(k) to define the phase space, while in 3-D, we use three complex

components of each of the vectors fi(k) and b(k) to define the phase space. However, in 3-

D, the three components are kinematically linked by solenoidality (3.12), so that only two are

independent. Thus, not all of the phase space axes for 3-D turbulence are independent and

the number of phase space dimensions is larger than rid, but this redundancy is tolerable since

there is no inherent reason to prefer any two of the components over a third. The dimension of

the phase space is determined by grid size, for either 2-D or 3-D turbulence and also whether

B = 0 or not. In the 2-D Euler case, the dimension of the phase space is n =nd = F2, while

in the 2-D MHD case, the dimension is n =nd = 2F2, where F2 is given by (3.63). In the

3-D Euler case, the dimension of the phase space is n = 3 over2nd = 3 over2F3, while in

the 3-D MHD case, the dimension is n = 3 over2nd = 3F3, where F3 is given by (3.64). In

planning a numerical implementation, the argument can be reversed, since computational

speed and available core memory dictate the value of the grid size N D, thereby setting the

largest practical n and rid.

The equations of the dynamical systems created using isotropically truncated Fourier

expansions all have the following appearance:

d vj
dt = fj(v)- ecjvj. (4.1)

(Above, there is no sum over the repeated indices.) The n-dimensional vector v has com-

ponents vj, j = 1,..., n, each of which represent a different independent component, for

example, drawn from the 3-D Fourier vectors fi(k) and I_(k), or from the 2-D scalars cb(k)

and 5(k). The constant _j is either uk 2 or r/k 2, as appropriate for the particular vj. The

term fj contains the nonlinear coupling of the different vj. Thus, (4.1) can represent any of

the 2-D or 3-D evolution equations discussed in the last chapter. Since (4.1) has no external

driving force on its right side, it is termed autonomous, so that we are dealing here with an

autonomous, nonlinear dynamical system.
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4.2 Canonical Ensembles

Thus far, we have abstracted the various 2-D and 3-D finite Fourier models of fluid and

magnetofluid turbulence that appeared in the last chapter into the form of an nd-dimensional

dynamical system contained in an n dimensional phase space and represented by a phase

vector v that satisfies (4.1). Effectively, we have the whole system identified with a single

point in the n-dimensional phase space F (n >> 1), whose trajectory v(t), we assume, follows

some phase path, beginning at some initial point v(0), and satisfies certain constraints. Here

we will specify some of these constraints by initially assigning specific, self-consistent values

to the ideal integral invariants associated with whichever one of the six different cases of

homogeneous turbulence we are studying. Each ideal invariant is essentially an equation

that defines a hypersurface of dimension n - 1 in P. In addition, the solenoidal constraints

(3.12) define a host of other hypersurfaces for cases of 3-D turbulence. The intersection of

all hypersurfaces is the invariant subspace or manifold for the particular case being studied.

If the integral invariants were strictly conserved and known to infinite accuracy, the

invariant manifold would have either nd -- 2 or nd -- 3 independent dimensions, depending

on whether the dynamical system has two or three ideal integral invariants. In the case of

strict conservation, the probability that a phase point was on the invariant manifold would

be unity and the probability that it was off the invariant manifold would be zero.

As an example, in 3-D ideal Euler turbulence the invariants are the energy E = EK

(3.76) and the kinetic helicity HK (3.81). If these were exactly conserved, they would always

be equal to their initial values: E = E [°] and HK = H_ ]. Then, the probability distribution

D, would be given by

D. = 5(E-E[°])5(HK " H_]).

The phase function D r is the microcanonical ensemble probability distribution (or density).

Again, its use would be required if the ideal invariants were strictly conserved, although its

use in the calculation of expectation values would be a great challenge, since the integration

must take place on a rather complicated hypersurface in F (called the invariant manifold).

However, on a computer, invariant values are defined only to a finite level of accuracy

and, as the system evolves, errors in the computed values of fi(k) and 1T}(k) will occur and

cause the value of each ideal invariant to be satisfied only up to small fluctuations. This,

in turn, will cause what would have been the microcanonical invariant manifold to move

about during a simulation. The result is that the fluctuating phase point sweeps out a

'fuzzy' hypersurface in F. In this case, the distribution of phase points is best described by

a smooth phase function D (but one that is highly peaked on the average position of the

'fuzzy' hypersurface). Such a phase function is called a canonical probability distribution or

density.

Since n >> 1, the 'invariant manifold' is generally nontrivial and there are many choices for

its initial points v(0). In fact, on a digital computer, there will be a finite, though very large

number, of possible v(0), which form the set 120 of all initial values of v at t = 0 consistent

with the initial values of the ideal invariants and the inherent accuracy of the computer.
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Again, 120 would be the invariant manifold for a microcanonical system, since it contains all

v C F that satisfy all constraints (to machine accuracy). On the other hand, a canonical

ensemble is the set 12 of all v(t), as defined by numerical implementation of (4.1), following

from all of the possible v(0). Although all v(0) c l;0 are equally probable initial values, the

points v(t) C 12 _ F are not all equally probable, but instead have a probability determined

by the canonical probability density D. Therefore )20 is the initial manifold, which broadens,

due to fluctuations, into the (fuzzy) invariant manifold for a canonical system. The form of
D will be determined after a discussion of Liouville's theorem.

4.3 Liouville's Theorem

The finite set 120 _ v(0) can be thought of as a 'gas' of noninteracting points which move

about according to (4.1). If the distribution of these points in F at any time t is given

by D, then the number of points (in in the small volume of phase space (iF is (in = D (iF.

In analogy with our development of the continuity equation (2.7), we require that the 5n

remains constant (i.e., the number of points is conserved):

d D (iF

dt

dD
= (iF

dt

-- O.

dSF
+D

dt

(4.3)

The small phase space volume (iF can be expressed as

(iF
n

= II (iVi,

i=1

(4.4)

so that

dSF

dt
__ _ dSvj

j=l dt icj]l""(i vi

n

= E(i dvj
dt II 5 vi

j=l iCj

n

= E 5[/j(v) -  jvj] II
j=l i_j

j=l Ovj

- _ _j 5F.
j=l

II 5vi

(4.5)
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The last step follows from (4.4) and because fj(v) does not contain vj (as can be seen by

looking at any of the evolution equations of the last chapter), which implies

o/j(v) = 0. (4.6)
Ovj

Defining _c = }--_.jn_.=lNj )__ 0, it is clear that (4.5) leads to

6[` = 5F [°] e -'_t and D = D [°] e+'_t, (4.7)

where 5F [°] and D [°] are the values of 5F and D at t = 0. The relations (4.7) pertain to a

phase space volume element which moves along with the points it contains, and the increase

in the density of points D is balanced by the decrease in 5F, so that 5n = D 5F remains

constant.

If _, = r] = 0, then _j = 0 --+ _ = 0, and the dynamical system is conservative, so that

(4.1) represents ideal homogeneous turbulent flow. In this case, equation (4.6) is a critical

detail for ensuring that both D and 5F remain constant during ideal flow in phase space. The

result D = constant is sometimes termed a detailed Liouville theorem, to separate it from

the Liouville theorem associated with conservative Hamiltonian systems, where Hamilton's

canonical equations ensure the constancy of probability density and phase space volume.

It must be emphasized again that 'constant' for a canonical ensemble means 'constant

to within small fluctuations.' Thus, the various ideal integral invariants fluctuate slightly

about their average values and, for example, the expectation value of fluctuations in energy,

i.e., the variance of energy, is {(E- (E}) 2} 7_ 0. The expectation value (Q} of any phase

function Q is defined as

{@) --= /@DdF. (4.8)

Here, the integration is over the whole of phase space -ec < vj < +e_ and D is normalized

so that (1} = 1. Expectation values will be more fully developed in the following sections.

Canonical Probability Density

The canonical probability density function (PDF) D is a phase function, that is, a function of

the phase variables vj in the phase space F. The result that D is constant (again, to within

canonical fluctuations) for ideal flow means that D is itself a function of other constants

of the motion, i.e., the ideal invariants. Furthermore, for any system, the phase space can

generally be decomposed into a Cartesian product of subspaces:

[` = [,(1) ® [,(2)

v -- v (1) @ v (2), v E F, v (1) ¢ [`(1), V(2) ¢ [`(2). (4.9)
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(It is possible that [,(1) and F (2) may be further decomposed, the process continuing until

some maximal irreducible set of product subspaces is reached.) Each subspace F(0, i = 1, 2,

will then have its own statistical distribution function D (0, i = 1, 2, such that

D = D(1)D (2). (4.10)

This relation holds whether or not the separate variables in F (1) and F (2) interact.

If the F(0, i = 1, 2, did not interact with one another, the D (i), i = 1, 2, will each be

constant functions of ideal invariants pertaining only to their variables, i.e., their inherent

summations will be restricted to the smaller set of variables found in either F (1) or F (2),

rather than the whole set found in F. However, if the F(0 do interact to form a quasi-closed

system, this will reach equilibrium and D will be a constant function of the ideal invariants

associated with the whole phase space P, although the D (/), i = 1, 2, will individually no

longer be constants of the motion.

To illustrate this point, consider 3-D Euler turbulence, where the invariants are energy

E = EK (3.76) and kinetic helicity HK (3.81). In this case, we can form the P (i), i = 1, 2,

by choosing two disjoint sets of wave vectors k. Let tC be the following set:

IC = {k t kmin <_ k <_ kmax}, (4.11)

and from this choose two subsets K:(0, i = 1, 2, such that

K: : K: (1) U 1(7 (2) and /(7(_) A 1(7(2) = 0. (4.12)

Usually the choice kmin = 1 is made, but other values can also be chosen, (Note that km_n = 1

rather than kmin = 0 is used since all modes associated with k = 0 do not dynamically evolve,

as the results in the previous chapter show. They are always initialized with zero value and

retain this value during a numerical simulation.)

As a specific example, since each k has integer coefficients, two subsets that tend to equal

size in the limit of large kmax and which satisfy (4.12) are

1C(1) = {k l kmin <_ k <_ kmax, k 2 is odd}

/(7(2) = {klkm_n <_ k < kmax, k 2 is even}. (4.13)

Other examples can be devised, with the only requirement being that the Fourier modes

associated with a given subset may be dynamically coupled to each other, but can be dy-

namically decoupled from those associated with the other subset. The example embodied in

(4.13) has some interesting features, as will be discussed in the next chapter.

The variables in F(0, i = 1, 2, are the independent components of fi(k), k C/C(0, i = 1, 2.

For 3-D Euler turbulence, the energies and helicities associated with F and the F(0, i = 1, 2,

are

E = E (1) + E (2), E(i) = 1
2 _ fi(k)12' i=1,2

kC/(:(O

H_)=- 1 fi, , ,
2 _ (k)-d_(k) i=1 2.

kE/C(i)

(4.14)
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(All three components of fi(k) and d_(k) are included in the sums above, not just the indepen-

dent ones.) The sets tC and/C (i), defined by (4.11), (4.12) and (4.13), contain modes k _ -k

which are equivalent because of the reality condition (3.14). To reduce this redundancy,

define

K:' = {klkctC, k._'___0)

/(7'(i) = {klkE/(7 (0 , k.K'_>0}, i=1,2

_' --- __ (2kmax)-l(Sr qt_ _,). (4.15)

Thus, /C' and/(7' (i) have half the members of/C and/C(0, respectively. Using these results,

(4.14) becomes

E (i) _ Ill(k) _ and H(i)= fi* ,= K _ (k). dJ(k) i = 1, 2.
kEK:/(i) kEK71(i)

1 appears in front of the sums (4.14) because these count twice every term inThe factor of 2

the sums (4.16).

Since the canonical probability densities are functions of the ideal invariants, the only

nontrivial functions which satisfy (4.10) when F (1) and F (2) are in equilibrium are

1

D = Z exp(-oeE- _HK)

D(i) _1 [ ]- Z(i) exp -aE (i) -/SH_ ) i = 1 2, , •

The normalizing functions Z and Z (i) are called partition functions:

Z = f exp (-c_E -/SHK) dr

Z (0 = f exp (-ozE (i) -/SH_ ))dP (i).

(4.17)

In (4.17) and (4.18) the parameters c_ and/5 are not phase functions, but instead are un-

determined multipliers, or as they are often called, inverse temperatures. Terms such as

_k. fiR(k) are not included in (4.18) because these are zero to within small fluctuations.

Also, the phase volume elements in (4.18) are

dF = 1] dr(i), dF(i) = II dF(k), dF(k) = dfiR(k)dfii(k).
i kEKy(i)

There are analogous expressions to (4.19) for the other five cases of ideal homogeneous tur-

bulence. (The modal subspaces F(k) for the different cases of ideal turbulence are explicitly

identified in Table 4.2.)
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If the F (i) are isolated from one another, then each will have different inverse temperatures

cg i) and fl(i). In this case D (i) and Z (i) will have the form

_ 1 [ (;]-- Z(i) exp -o_(i) E (i) -fl(i)H ) i = 1 2, , •

(4.20)

Here, in general, c_(1) 7_ c_(2) and/_(1) 7L _(2). However, if the F (i) are dynamically connected,

then they will both equilibrate to the same 'temperatures,' _ and _, returning them to the

forms (4.17) and (4.18).

It has been stated that the canonical invariants, such as E and HK, fluctuate about aver-

age values and are constant only in a probabilistic sense, i.e., the fluctuations are relatively

small. The probability densities appearing in (4.17) (and their analogous forms for the other

five cases of ideal homogeneous turbulence) provide a way to give this statement precise

meaning. Canonical probability densities will, in fact, be highly peaked at the average val-

ues of the integral invariants, but it must be noted that E and HK within the exponentials

of (4.17) can take essentially unbounded values within F.

Also, in looking at (4.17), we see a general and very useful feature of the canonical

probability densities of ideal homogeneous turbulence: They are all essentially Gaussian

probability distributions, i.e., the arguments of the exponentials can always be put (through

coordinate transformations, if necessary) into the form of negative definite (because of the

minus sign) symmetric quadratic forms. This fact makes calculation of the expectation values

of moments of the variables of F a straightforward procedure, as will be seen presently.

4.5 Partition Functions

Z = f exp (-aI1 - flh - "//3) dF

Case Bo 11 12 /3

2-D Euler - E ft 0

3-D Euler - E Hie 0

2-D MHD 0 E He A

2-D MHD 1 E He 0

3-DMHD 0 E Hc HM

3-D MHD 1 E Hc 0

Table 4.1: General form of partition functions.
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In the last chapter the evolution equations and ideal invariants of the six basic cases of

ideal homogeneous turbulence were presented. Here, the six cases, their ideal invariants, and

the general form of their partition functions are given in Table 4.1. In order to demonstrate

the evaluation of the general integral of a partition function, consider, once again, the 3-D

Euler case:

Z = f exp (-aE - ¢?HK) dr' : 1-I Z(k),
kEtC'

where the modal partition function Z(k) is

Z(k) = fexp [-alfi(k) 2- itifF(k), k x fi(k)] dr(k)

= f exp [-A(k)] dr`(k), (4.22)

and the modal six-dimensional volume element dr`(k) is given by (4.19). Also, recall that

each variable in (4.22) is evaluated from -ec to +ec.

Expanding fi(k) explicitly into real and imaginary parts and the argument A(k) in (4.22)

becomes

A(k) = a fi(k) 2 +/315" (k). ¢b(k)

-- oz [ fiR(k) 2 + Ifi,(k) 2] + 2/_fit(k). k x fiR(k).

(4.23)

The integral in (4.22) can be evaluated by either the coordinate transformation

fi_(k) = fi.i(k) + ¢?k × fiR(k), (4.24)
0L

or the alternative one

fi_(k) = fiR(k)- /_k x fii(k). (4.25)
oz

Upon using the transformation (4.24) on (4.23), the integral in (4.22) becomes

f [ a2-¢ _2k2 2Z(k) = exp - IfiR(k)
oz - c_lfi}(k)[ 2] dr'(k).

(4.26)

Here, dF'(k) = dfiR(k)dfi'1(k ). [Using (4.25) would merely have switched the subscripts

R @ I in the dr'(k).]

In order to evaluate (4.26), the parameters a and/3 must satisfy the following inequalities:

2 2
ct > O, ct 2 > _ kma z. (4.27)
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Provided these inequalities are met, using the well known result

( ) iZ(a) = exp-ax 2 dx = 7r (4.28)
a

produces

Z(k) = (4.29)

Note that although we have found Z(k), and thus Z by (4.21), the quantities a and

are still undetermined, though (4.27) limits their values. Also, note that the two coordinate

transformations (4.24) and (4.25) show that D is essentially a Gaussian distribution function

on the variables fi_(k) and fi)(k).

The modal distribution functions for the other cases of ideal homogeneous turbulence

listed in Table 4.1 can be found in the same way as the 3-D Euler case just considered. The

results of doing so are given in Table 4.2. In this Table, the six separate cases are listed, as

well as their associated phase variables and modal distribution functions. Using these results

in the next section will allow us to find various expectation values, since the Z(k) normalize

their associated canonical probability densities.

4.6 PDFs for Ideal Turbulence

The canonical probability density function D that gives the expected phase space distribution

of phase points is

D = II D(k), Ii = _ Ii(k), i=1,2,3
kE/E l kEK I

D(k) = 1 /Z(k) exp [-all(k) - 312(k) 713(k)] dr(k).

m

(4.30)

The modal partition functions Z(k) are given in Table 4.2 and the modal terms Ij(k),

j = 1, 2, 3, are given in Table 4.3. These will be used in the next section to determine

expectation values of moments of phase space variables.

Expectation Values

Now, we move on to determining expectation values (4.8) for moments of the components

of fiR(k), fie(k), l_R(k) and l_,(k). In what follows, the expectation values apply to those

components that are kinematically nonzero. To be more explicit, when kx = kx_ or ky = ky_

or kz = kzi_ (i.e., only one component of k is nonzero), then solenoidality leads to _2j(kj) =

1)j(kj) = O, j = x, y,z for all t. In these cases all expectation values are zero; in all other

case, they are as given below.
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Z(k) = f (k, a, /_, 7)

Case Bo r(k) Z(k)

2-D - 5JR,I (k) 7r

Euler oz/k 2 +/3 < 0, _ > -_/k_

3-D - fin,I(k) _-3
3

Euler (o_2 _/32 k2)2

a>0, B <a/k_a_

2-D 0 5_n,i(k) 7r2 a > 0

MHD 5R,,(k) 6 2 -q{-OL'y/]_ 2 ")/ > 0, 6 2 > --OL")//k2ax

< O, 5 2 > --O{"}//k2min

2-D 1 WR,i(k) 7r2 a > 0, 5 2 > 0

MHD aR,_(k) 52 7 = 0

3-D 0 flR,i(k) 71-6 OL > 0, 5 2 > 0

MHD l_R,t(k) (5 4- 0/2_/2/k2) 32 _l < kmin52/OL

3-D 1 tlR,i(k) 7r6 o_ > 0, 52 > 0

MHD bRj(k) 5 6 7 -- 0

Table 4.2: Modal partition functions for ideal turbulence.
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D(k) = Z-_(k) exp [-aI_(k) - flI2(k) - 713(k)]

Case Ii(k) I2(k) I3(k)

2-D k-2l_R(k)l2 I_R(k)l2+ I_z(k)[_
Euler + k-2l_(k)l 2

3-D IfiR(k)l2
Euler + Ifi,(k) 12

2k. fiR(k) x fi,(k)

2-D k-21&R(k)l2 5_R(k)&R(k)
MHD t + k-21&,(k)l 2 +&i(k) _,(k)

+ k21aR(k)l2
+ k2[ai(k)l 2

laR(k)l2 + I&z(k)l2

3-D IfiR(k)12 fiR(k)" I_R(k)
MHDt + Ifiz(k)l2 + fii(k)- l_I(k)

+ II_R(k)[2
+ tbz(k)t2

2k. aR(k) x a,(k)

tWhen Bo = 1, 7 - O.

Table 4.3: Modal density functions for ideal turbulence.

First, we note that the following integrals of an odd integrand between symmetric limits

are zero:

/f ( )Z2n-l(a) = x 2n-lexp -ax 2 dx = 0, n=1,2,3, ....
oo

(4.31)

Similar integrals of even powers of x are nonzero, however, and can be found from (4.28):

/?Z2n(a) -- fox 2n exp (-ax 2) dx

= -da Z(a)

_- (2n- 1)!!Z(a) ' n = 1,2,3, .... (4.32)
(2a) n

In terms of (4.28) and (4.32), the expectation value of an even power of a variable with a
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Gaussian distribution function is

Z(a)

In particular, for n = 1, (4.33) gives

(2n- 1)!!

(2a)n , n = 1,2,3, .... (4.33)

while for n > 1, we have

(x2} = I2(a) = 1 (4.34)
27(a) 2a'

(x 2n} = (2n- 1)!! (x2} n. (4.35)

Thus, knowledge of <x2) gives knowledge of all the nonzero moments <x2n>, thereby com-

pletely determining the statistics of x, which is a well known result for Gaussian distributions.

The expectation values of powers of the phase variables can now be calculated for the six

cases of ideal homogeneous turbulence using the general form

<_m(k)) = f5m(k)DdF

= f gin(k) D(k)dr(k), (4.36)

where the modal canonical probability densities D(k) are defined in (4.30) and given explic-

itly in Table 4.3. Evaluation of expectation values for the different cases of ideal homogeneous

turbulence requires the use of coordinate transformations such as (4.24) and (4.25). Since

these expectation values are important, we will look at them in detail. The general form of

the probability densities is

1

D(k) = Z(k) exp[-A(k)]

A(k) = all(k)+ _/2(k)+ 7/3(k). (4.37)

The values of Ii(k), i = 1, 2, 3, for the different cases are given in Table 4.3.

4.7.1 2-D Euler

In the 2-D Euler case, the modal argument in (4.37) is summation over the real and imaginary

parts of a modal variable:

A(k) = y_ [a&_(k)/k 2 +/3c_(k)]
S = R,I

= Y_. (a/kS+ 8)&_(k).
S=R,I

(4.38)



50 CHAPTER 4.

If we put the following into (4.31) and (4.34),

x = cbs(k),

we easily determine

STATISTICAL MECHANICS

a = oe/k 2 +/5, (4.39)

k 2

(&s(k)) = O, @_(k)} = 2 (a + ilk2) ' S = R,I.

Expectation values of higher even powers can be generated using (4.33).

(4.40)

4.7.2 3-D Euler

In the 3-D Euler case, the modal argument in (4.37) is given by (4.23), after applying the

transformation (4.24):

A(k) = a [ fiR(k)l 2 + ill(k) 2] + 2flfi,(k). k × fiR(k)

= _-1(_ - z_k_) _(k) _+ __;(k)_ (4.41)

As was noted earlier, (4.25) can be used instead of (4.24), which merely switches R and I in

(4.41). Thus, using these results, along with (4.31), (4.34) and (4.37) gives

@s,i(k)} = 0, S=R,I, i=x,y,z,

c_ (4.42)(_L(k)} = 2(_-z_k_)

Since (4.41) also gives

(_},i(k) _},i(k)} =
1

i = x, y, z, (4.43)
2o_'

we can use (4.24), along with our ability to interchange R and I, to show

(Ss,i(k) &s,i(k)) =
-/3k 2

S = R,I, i = x,y,z.
2 (_2 _ _2k2 ) ,

(4.44)

4.7.3 2-D MHD

In the 2-D MHD case, the modal argument in (4.37) is

A(k) = _' {c_ [k-2&g(k)+ k2g_(k)] +/3&s(k)gs(k) + 78_(k)}
S=R,I
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Oz

= Z [k2&_(k)+fl_zs(k)gs(k)+(ak2+7)a_(k)]
S=R,I

l wS (k) + + 3`

-- a S
E L\ ak2 + 3` &g(k) + + (k)

S=R,I

(4.45)

Here we have introduced 52 = a 2- lt2 for brevity. In (4.45), the two transformed variables4

are

tk 2

_(k) = 5_s(k)+ 2a_s(k)' S=R,I

tk 2
&_(k) = _s(k) + 2(ak 2 + 3`) &s(k).

(4.46)

From these results, it is a straightforward matter to deduce the following expectation values:

(&s(k)) = (_s(k)/ = 0, S = R,I

ak 2 + 3`

(&2(k)} = 2(62+a3`/k 2)

_(k = 2 k 2 (5 2 + a3`/k 2)

fl (4.47)
(&s(k)_s(k)) = -4 (6 2 + a,_/k2)"

Again, 52 = a2 _ 1f12 In the case where Bo = 0, we have 3` --_ 0, while in the case where4 "

Bo = 1, we have 3' - O.

4.7.4 3-D MHD

Finally, in the 3-D MHD case, the modal argument in (4.37) is

A(k) = E [a as(k)l 2 + a l_s(k) 2 + tiffs(k)" l_s(k)]
S=R,I

3' l_R(k) x l_,(k). (4.48)
+2k2k •

There are essentially two ways to transform variables in this argument. The first starts with

fi_(k) = fis(k) + t l_s(k) S = R, I, (4.49)
2c_
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and then uses either of the following

1_}(k) = l_,(k) + 52k2k x I_R(k) (4.50)

c_7
l_(k) - l_R(k)- 52k2k x l_f(k).

Using (4.49) and (4.50)transforms (4.48)into

A(k) - o_]fi_(k)l 2 + o_tfi_(k)l 2

(4.51)

+ _ _2 252 _2_fl/k2faR(k)12+ II_(k) . (4.52)
Ol(_ 2 OL

If (4.51) had been used, R and I would be switched in (4.52)

The second approach uses

fi}(k) = fli(k) + :o_l_R(k)' (4.53)

followed by (4.50), and then

l_(k) I_R (k) + fl52 fiR(k). (4.54)
2_(6 2 - _,2/k2)

Using these transforms (recalling 62 = c_2 _/32/4) turns (4.48) into

A(k) = (_4 __ _2,._,2/k2 12 o_ fi_ 2
_(52 _ _2/k2) IfiR(k) + (k)

a(6 2 - _2/k2) 62
+ 62 l_)_(k) 2 + _ 6}(k)l 2 (4.55)

A similar set of transformations would produce an equation identical to (4.55), but with R

and I switched.

The expectation values for the 3-D MHD case are thus:

(fis(k)) = (l_s(k)} = 0, S=R,I

(fi_(k)} = 3 oe(52 - 72/k 2)
2 (_4 __ og272/k2

( l_s(k)12 } = 3 c_a2
2 6 4 -- o_2_y2/k2

(fis(k)" l_s(k)) =
3 _62

4 64 - c_23,2/k 2

(fis(k)" l_s(k)) =
3 oflT/k 2

2 6 4 - oflT2/k 2"
(4:56)
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Once again, _2 = a2 _ 1f12. In the case where Bo = 0, we have 3' ¢ 0, and in the case where
4

Bo = 1, we have 7 = 0. The factor of 3 appears in these results because fi(k) and l_(k) are

3-vectors, whose three components all add equally to (4.56).

References for Further Reading

One good reference on dynamical systems is [Verhulst 96].

Microcanonical and canonical emsembles are discussed in [Khinchin 49] and [Landau 80].

That a detailed Liouville theorem exists for ideal turbulence was discovered by [Lee 52].

Initial applications of canonical ensemble theory to the six cases of ideal turbulence were: 2-

D Euler [Kraichnan 75]; 3-D Euler [Moffatt 69, Kraichnan 73]; 2-D MHD (Bo = 0)[Fyfe 76],

(Bo = 1)[Shebalin 83]; and 3-D MHD (Bo = 0)[Frisch 75], (Bo = 1)[Shebalin 89, Shebalin 94].

A good review article on 2-D turbulence, including some discussion on ideal 2-D Euler and

MHD turbulence (Bo = 0)is [Kraichnan 80].
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Chapter 5

(

Thermodynamics

Canonical ensemble theory, as it applies to ideal homogeneous turbulence, was discussed in

the previous chapter and allowed us to determine the statistical mechanics of an interacting

system of Fourier modes. In fact, the independent Fourier modes, denoted by unique wave

vectors k C /C (see eq. 4.15), form the set of 'molecules' of the interacting system, in

analogy with the individually numbered real molecules of a Maxwellian gas. A gas molecule

has its own set of associated variables; e.g., in a polyatomic gas, each molecule has its

own momentum and angular momentum, each vector having three components, for a total

six variables (neglecting vibration). This defines a 6-D subspace in the phase space of the

Maxwellian polyatomic gas. The modal subspaces of ideal turbulence are defined in exactly

the same way, so that the modal subspaces F(k) in the different cases of ideal turbulence

have their own characteristic dimension (though not all dimensions are independent):

m = dim r(k). (5.1)

For the different cases, the modal variables are listed in Table 4.2 and give, for the different

cases of ideal turbulence, m = 2 for 2-D Euler, m = 4 for 2-D MHD, m = 6 for 3-D Euler,

and m = 12 for 3-D MHD. Thus, each Fourier mode is a 'molecule' with m degrees of

freedom.

Furthermore, knowledge of the invariant quantities for the different cases, as summarized

in Table 4.1, enabled us to find the corresponding canonical probability densities and use

these to determine expectation values for the moments of the modal subspace variables. This

is the essential product of the statistical approach - 'microscopic' quantities, i.e., modal ex-

pectation values. What we wish to do now is move on to look at 'macroscopic' quantities,

such as the inverse temperatures c_, _ and 7 (which are heretofore undetermined). These

macroscopic quantities pertain to all modes and are, in fact, found by summing over all

independent modes k. This summation over all modes moves us from the realm of statis-

tical mechanics into the realm of thermodynamics, where we are no longer concerned with

specific modes, but instead with summations over all modes. These summations produce

thermodynamic functions that will have specific values for the closed system of interacting

Fourier modes.

55
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Thus, in analogy with the theory of a molecular gas, we move from a statistical description

to a thermodynamic one. To maintain the analogy, we must ensure that analogous 'laws of

thermodynamics' are present in our model system. The first law is conservation of energy,

and this is always a invariant for ideal turbulence. The second law, i.e., that entropy never

decreases after an interaction, will be established in this chapter for ideal turbulence. (The

third law, the vanishing of entropy as temperature goes to zero, is quantum mechanical, and

not applicable here.) To begin the process, we first discuss temperature (or rather inverse

temperatures).

Inverse Temperatures

We have already encountered several thermodynamic functions, namely, the energy, enstro-

phy, mean square vector potential, and the various helicities. We can introduce others, as

required, to facilitate our analysis. All of these thermodynamic functions will have expecta-

tion values for the system under consideration, which can be determined in the established

manner. Some of these functions, in particular the invariants already identified, will have

essentially constant values as the associated system evolves with time, while others, known

to vary with time, will nonetheless also have specific expectation values. The difference

between the invariants and the non-invariants is that we can predict the expectation values

of the first group, but cannot predict those of the second. A priori, then, we must treat

the expectation values of non-invariants as unknown parameters, a role which will turn out,

in fact, to be useful. Let us give these preliminary remarks some substance by explicitly

considering the different case of ideal homogeneous turbulence.

5.1.1 2-D Euler

In this case, the two functions we have already met are the energy E and the enstrophy f_:

E = Z (5.2)
kEK_ l

- _ I_(k)2. (5.3)
kE/(Y

If we take the expectation values of the above, and use the modal results given in (4.40), we

get

1
(E) = $ = _ (5.4)

k E1G' O_ -at- fl k 2

k 2
(a) = = Z

ke_' a + 3k 2" (5.5)

Thus, we see that the inverse temperatures a and/_ are implicit functions of g and/2. While

these two equations can be solved numerically, the procedure is somewhat problematic (.and

becomes more so when there are three inverse temperatures).
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Instead, we will look at the expectation value of the non-invariant mean square stream

function _:

II/ -- E k-4 &(k)2, (5.6)

kEK7

which is

1

(_/ = e = Z k_ (_+Zk:)- (5.7)
kEK: I

Although g and g? will differ from the initial values of E and f_ only up to small fluctuations,

we do not know what _ is, d priori. However, we can use _ to parameterize c_ and/3 by the

following procedure.

First, we note that the following algebraic relations can be derived from (5.4), (5.5) and

(5.7):

These 'thermodynamic relationships' are simultaneous linear equations and are readily solved

to yield:

Z;X?- N'g
c_ = 90_g 2 (5.10)

N'P- £g

/3 = g?g, _ e2 . (5.11)

These have been written so that the denominators on the right sides are positive:

- 2 _ (o_+flq2)(o_+/3k 2) > 0. (5.12)
q,kEK7

The numerator in (5.10) is:

£X? - Ar'g =
c_ (q_ - k2) 2

q,kEK7

The numerator in (5.11) is:

Af'g'- £$ = _ q2k22 (o,
q,kC/C l

(5.14)
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Placing (5.12), (5.13) and (5.14) into (5.10) and (5.11) yields a tautology.

At this point, we can allow _ to vary: _ --_ _', which turns (5.10) and (5.11) into

£Y2 - N'£"
c_' - (5.15)

_p,_ g'2

AfqP' - £E
fl' = (5.16)

_2_'- _c2 "

Here, g and _2 are constant values and _P' is a variable parameter, _P' > g2/_, such that

c_' = a and fl' = fl, when k_' = _P. The challenge is to find a procedure for determining when

_P' = k_, so that c_ and fl may be found, and the modal expectation values (4.40) exactly

determined. This will be done in the next section, after we treat the Other cases of ideal

turbulence and develop results analogous to the above expressions.

5.1.2 3-D Euler

In this case, the two (invariant) functions are the energy E and the kinetic helicity HK"

E = _ fi(k) 2 (5.17)
kCK7

Ha- = E fi(k)-c0(k). (5.18)
kEK7

If we take the expectation values of these, and use the modal results given in (4.42) and

(4.44), we get

3c_

<E> = E = Z _ (5.19)
kE/C I

(5.20)
(HK) = 7-/K = _ a2_f12k2.

kEK7

We see that in the 3-D Euler case, the inverse temperatures a and/3 are implicit functions

of E and 7-/K.

Here, we will look at the expectation value of the enstrophy _, which is non-invariant for

3-D Euler turbulence. The enstrophy is

= y_k21fi(k) 2, (5.21)
kEK:'

and its expectation value, using (4.42), is

3k 2 c_

(_) = _2 = _ _2_f12k 2" (5.22)
kEiC I
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Both g and 7-/K will differ little from the initial values of E and HK, but in this case we do

not know the value of X2, d priori. Here, we will use a variable _2r to parameterize c_ and/3,

in a similar manner as before.

Using Af' as defined in (5.8), the following algebraic relations can easily be derived from

(5.19), (5.20), and (5.22):

c_E+/_7/ir = 3N' (5.23)
c_ +/_s? = o. (5.24.)

These simple linear equations readily provide c_ and/3:

3A/"_Q

= Ex?- _ (5.25)

Again, we have a thermodynamic relationship: the inverse temperatures for 3-D Euler tur-

bulence are given explicitly in terms of the unknown value £2. Thus, the equations

/_t .__ "_K r- s?, _ (528)

produce the correct values a and/3 when the variable parameter/2' is set equal to _2, which

in turn allows the modal expectations values (4.42) and (4.44) to be determined.

5.1.3 2-D MHD

Here, the (invariant) functions are the total energy E, the cross helicity He, and the mean

square vector potential A (for Bo = 0):

E - E [k-2 Ic_(k)2÷ k2 I&(k)2]
kE/C I

(5.29)

He = E c_*(k)O_(k) (5.30)
kC/C I

A = _ I_(k)l 2 (5.31)
kE/C I

If we take the expectation values of these, and use the modal results given in (4.47), we

arrive at

2°z + 7/k2 (5.32)

kEK_ I
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-8/2 (5.33)
(Hc) = nc = _ 62 + a3"/k2

kEK I

°z/k2 (5.34)
(A) = .,4 = _ 52 + o_/k2.

kE tU

Here, 62 = c_2 - 1;92. We see that in the 2-D MHD case, the inverse temperatures c_. _, and4

3' are implicit functions of (E), (He) and (A).

In this case, we also consider the expectation value of the magnetic energy EM, which is

a non-invariant function for 2-D MHD turbulence:

EM = E k2 la(k) 2. (5.35)
kEEI

The expectation value of this, using (4.47), is

(5.a6)
k6K;'

Again. 62 = c_2 1 2, -- 4/9 " While E, 7-/c, and A are constants, the value of EM will have relatively

large fluctuations. Here, we will use g_ to parameterize c_, _, and 7-

Using Af' as defined in (5.8), the following algebraic relations can easily be derived from

the above expressions:

ag +/9_tc + 3'A = 2H' (5.37)

2a7/c + ¢_gM = 0 (5.38)

- 2E.) - = 0. (5.39)

These 'thermodynamic relations' readily provide c_,/9, and 3':

]V" O_M

c_ = gM(g - EM) - 7{_ (5.40)

/9 = -2Hca (5.41)
EM

g -- 2EM
c_. (5.42)

3' = A

The inverse temperatures for 2-D MHD turbulence are thus given explicitly in terms of the

unknown value of 7-/M. Here, we use a variable g_j to parameterize the inverse temperatures:

, A/"g_t (5.43)

/_' 7-/ca' (5.44)
= -2

, g- 2g_ c_'. (5.45)
3' = A
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Again, the true value E_ = EM is unknown, but once it is found, allows us to determine

a,/_, and 7 and thus the exact values of the modal expectation values (4.47). (In the case

1 g as the correct value, withoutwhere Bo = 1, we require 7 = 7' = 0, which leads to g_4 = 2

further ado.)

5.1.4 3-D MHD

Here, the (invariant) functions are the total energy E, the cross helicity He and the mean

square vector potential HM (for Bo = 0)"

E = E [fi(k)l 2 + l_(k)2] (5.46)
kEKY

Hc = _ fi*(k), l_(k) (5.47)
k6_'

HM = y_&*(k).l_(k). (5.48)
kCIC'

If we take the expectation values of these, and use the modal results given in (4.47), we

arrive at

3c_(252 - 72/k2) (5.49)

k6;C'

(5.50)
(Hc) = Hc : E 64 _ a272/k2

k6;C'

(5.51)
<Has) = _{M = _ (_4__Oz2_2/k2"

kCK:'

Here, 62 = c_2 - 1_2. We see that in the 3-D MHD case, the inverse temperatures c_, _ and
4

7 are implicit functions of g, 7-/c, and _M.

As in the 2-D MHD case, we utilize the expectation value of the magnetic energy EM,

which is also a non-invariant function for 3-D MHD turbulence:

EM = _ k2 II_(k) 2. (5.52)
kEKY

The expectation value of this, using (4.47), is

3o_6 2

<EM} -- _h,I --- E (_4 _ 0/20,2/k2" (5.53)
k6;6'

Again, 62 = a 2 - 1_2 While g, 7-/c, and 7-/M are constants, the value of EM will have4 '

relatively large fluctuations. Here, as in the 2-D case, we use g_,/to parameterize a, _, and

.
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OZ_. Jr- /3"3f'_ C .qt_ ,_,qf._M -- 6j_ft

2aT-/c+/3EM = 0

O_(_ -- 2_M) -- _qf'_M --_ O.

Using AP as defined in (5.8), the following algebraic relations follow from the above

expressions:

(5.54)

(5.55)
(5.56)

These 'thermodynamic relations' (which are the same as the 2-D MHD case if AP and A

there are replaced by 3AP and _M here) immediately provide a,/3, and 3,:

3.N"EM

= EM(E- EM)- _ (5.57)

qt-{ C

= -2 a (5.58)
EM

E -- 2EM
_. (5.59)

= 7-/M

The inverse temperatures for 3-D MHD turbulence are given explicitly in terms of the un-

known value of 7-/M. Using the variable $_4 to parameterize these gives:

, 3N'E_ (5.60)

7-/c c_' (5.61)
/_' = -2E,,,_,

, C- 2$_t o/. (5.62)
")' - 7-ti

Although the true value E_ = _¢M is unknown, once it is found, allows us to determine c_,/3,

and _ and thus the exact values of the modal expectation values (4.56). (In the case where

1 _c as the correct value.)Bo = 1, we require _/= "y' = 0, which again leads to _c_4 = 2

5.2 Entropy

Now that we have expressed the inverse temperatures for all cases of ideal homogeneous

turbulence in terms of a variable parameter, we can move on to defining a procedure for

actually determining the expectation value of the parameter. We do this by first defining

the entropy for each of the cases of ideal turbulence, and by showing that the entropy we

define in each case satisfies the second law of thermodynamics. The probability density for

all cases has the form

D -- Z -1 exp (--OJ1 -- /312 -- _/3) (5.63)

Z = 1-I Z(k), (5.64)
kE/_ I
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where the Ij, j = 1,2,3, are given in Table 4.1 and the Z(k) are given in Table 4.2. The

entropy is defined as

S -- - (lnD)

--- c_ (I1) ÷/3 (/2) + _' (/3) + In Z

= cA/" + _ In Z(k). (5.65)
kEK7

1
Here, c = 2 m is the 'specific heat' of a mode, where m is defined by (5.1) as the number

of degrees of freedom per mode. The term cA/" in (5.65) arises when the expressions (5.8),

(5.23), (5.37) and (5.54) are used for the different cases of ideal turbulence. Thus, c = 1, 2, 3, 6

for the 2-D Euler, 2-D MHD, 3-D Euler, and 3-D MHD cases, respectively.

The Z(k) are functions of the inverse temperatures c_, /3, % and k as Table 4.2 shows.

Since c_,/3, and "7 are implicit functions of the invariants, the entropy S, as defined in (5.65),

is also an implicit function of the invariants and thus is also a constant for a closed system;

i.e., it does not change unless the system is allowed to interact with another previously

isolated system. As (5.65) shows, entropy is also a function of the number of independent

modes Af' in the set of modes/C under consideration. (The subset of independent k is K'.)

The entropy has the following functionality:

S = or(K, c_,/3, "7). (5.66)

Using (5.65) as well as Table 4.2 allows us to list the entropy functionals a(K:,a,/3, "7) in

Table 5.1.

Now, if we use the variable parameters _', _', or E_4 to define variable inverse tempera-

tures a',/3t and 7t as we do in the previous section, then we can allow the entropy to vary

from its expectation value of S to S t, where

fitSt = a(IC, o_', .),'). (5.67)

We will now show that cr(/C, c_t,/3', "y_) takes a minimum value when c_' = c_, /3' = /3, and

7 t = % This will then provide us with a procedure for finding c_,/3, and "7 without having to

solve multivariable implicit equations, and more importantly, it will enable a demonstration

that entropy never decreases when two previously isolated systems are brought together into

one interacting system.

5.2.1 A Global Minimum

As a specific example of the global behaviour of entropy with respect to the variable param-

eters that have been defined, we will examine the 2-D Euler case. Using Table 5.1, equation

t

(5.67) becomes

= Aft(1 + In 7r)- _' ln(c_t/k 2 +/3')
k_K7

= A/"(1 + lnTr) + _ lnk 2- _ ln(o/+/3'k2).
kCKY kE_ I

(5.68)
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o(_, a,/_, 7) = c [A/"(1 + ln_-)- EK:, In ¢(k, a,/5, 7)]

Case c ¢(k, a,/3, 7)

2-D Euler 1 oe/k 2 +

1

3-D Euler 3 (a 2 -/32k2) _

1

2-D MHD t 2 (($2 + aT�k2)2

1

3-D MHD i 6 (54 -- ee272/k2)4

tHere , (_2 = c_2 1 2.-- 4/5 ' also, when Bo = 1, 7 = O.

Table 5.1: Entropy functionals for ideal turbulence.

Using a'(g"), as given by (5.15), and/5'(g_'), as given by (5.16). we have

da' _2a'

dg" f2_P' - $2

d/5' N'- 9/5'
dW _2_P' - £2"

Using these results, the derivative of S' by g" is

dS' OS' da'

dg" Oa' dW
+

1

= Z _'+Z'k_
kE1C I

N'(o'-o)
f2q"' - £2

OS' d_'

0/5' dqJ'

_,, _ c_2

(Recall that g" > £2/f2.) Here we have defined O' as

k 2

E o_'+ _'k_
kE/_ t

(5.69)

(5.7o)

(5.71)
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The result (5.70) indicates that dS'/d@' = 0 when/2' - F2 = 0, or

'_l __ /2 ---

k2 k 2Z c_'+_'k 2-a+pk 2
kEKY

_, (_, + _,k_)(_ + _k_)

Now, we can use (5.10), (5.11), (5.15), and (5.16), along with some algebraic manipulation,

to show

Placing this into (5.72) gives

9'-9 = (9'-9)F'

k_(k_- k_) (5.74)
kE/C t

We know from (5.70) that S' has an extremum at/2' =/2, and we now prove two assertions:

1) that this only occurs at _' = _, and 2) that the extremum is actually a minimum.

To prove the first assertion, we must show that F' _ 0 when /2' = /2 (initially leaving

open the possibility that _' _ _z). Using (5.10), (5.11), (5.15), and (5.16) again, along with

some more algebraic manipulation, shows that

a'E (k2- _2)2

kE/C I

Here we obviously have F > 0, so that F :fi 0. Using (5.11) and (5.16) gives

(5.75)

Placing (5.76) into (5.74), as/2' _/2, we also have _/" -+ _, so that

lim /2' = /2 - (_'- _z)G, (5.77)
_'--_

where G, using (5.75), is defined by

Using (5.70) and (5.77), we see that

dS' Af'G
lim =_'_ de" /2tP - _ (_' - _')" (5.79)
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Thus, we have proven our first assertion, that an extremum occurs only at g" = _P.

Next, using (5.79), we immediately see that

d2S' t N"Gd_p, 2 = (2_,_g 2 > O. (5.80)

This proves our second assertion: that _P' = g' is a minimum of S', and by the results given

above, it is a global minimum.

Although it will not be shown here, we assume that analogous results for the other cases of

ideal homogeneous turbulence can be found, requiring only increasingly laborious algebraic

manipulations. (These manipulations have been carried through for the 3-D Euler case,

although not for the ideal MHD cases with Bo = 0. It is conjectured, and fully expected,

that the MHD cases will follow suit.) The results, in each case, should mirror what has been

shown above, that when the entropies as defined in Table 5.1, and the inverse temperatures

are given a variable parameter, as described earlier in this chapter, then the entropies have

a global minimum with respect to this parameter. Now, we will move from these facts and

plausible conjectures to establish a 'second law of thermodynamics' for ideal homogeneous

turbulence.

5.3 The Second Law

First, a heuristic look at the expansion of a restricted set of modes into a larger set will be

given, and second, a general proof that entropy never decreases when two previously isolated

subsystems are brought together- The Second Law of Thermodynamics.

5.3.1 Expansion Into a Larger Set of Modes

To begin, we define two noninteracting systems that can then be allowed to interact. We

use the two disjoint sets of modes/(2 (i), i = 1, 2, defined in (4.13). Recall that both these

sets consist of vectors k, 0 < k < kmax, with the difference between them being that/C (1)

has only those k with k 2 odd, while/(;(2) has only those k with k 2 even.

Now, k 2 is the sum of two squared integers ('squares') for 2-D flows, while it is the sum

of three squares for 3-D flows. The following results from number theory are applicable here:

Sums of two squares: k 2 is the sum of two squares if and only if its (unique) prime factor-

ization contains no odd powers of primes p, such that p = 4m + 3, where m is a nonnegative

integer.

Sums of three squares: k 2 is the sum of three squares only if it is not of the form 4 n(8m + 7),

where n and m are nonnegative integers.

Thus, k 2 cannot take all possible positive integer values, in either 2-D or 3-D. (There is
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a well-known theorem, however, that states that sums of four squares can take all nonnega-

tive integer values.)
2

The number of positive integer values that k 2 _< kma x can take out of the total number
2

available (i.e., kmax) is different for 2-D and 3-D. A simple computer program shows that, in
2_ k._x = 104,the 2-D case, most positive integers < km_ x are not the sum of two squares (for 2

k 2 takes 2,749 out of 104 possible values - about 27.5%; for k2max -- 106, k 2 takes 216,314

out of 106 possible values - about 21.6%). In the 3-D case, the ratio of integers that are the
2

sum of three squares for a given km_ x to those that are not is almost exactly 5 to 1 (about
2

83%), as kmax, increases. However, in both the 2-D and 3-D cases, the number of individual

vectors k in the sets )U(i), i = 1, 2, appears to be essentially equal, for kmax > 10.

The two sets K;(1) and K_(2) have an interesting structure: K:(1) identifies a completely

noninteracting set of wave vectors, while K:(2) comprises a set of completely interacting wave

vectors. To see this more clearly, we will now examine the parity (even-oddness) of the

components of the vectors in K:(1) and K:(2). Let us represent even integers by 'e' and odd

integers by 'o.' Adding or multiplying even and even, even and odd, or odd and odd integers

yields even or odd integers in the following pattern:

e+e_e o+o_e

e. Cr, Je 0.0_,_ 0

e + 0 = 0-+- e "-' 0

e.o:o.e_e

(5.81)

Now, remember that for k C K;(1), we have k 2 _ o, while for k C K:(2), we have k 2 _ e. Using

the equivalences in (5.81), it is easy to see that, in 2-D, the kinds Of vectors found in the two
subsets K_(1) and K;(2) are

K;(1) K:(2)

(582)

(o,o)

Again using (5.81), in 3-D, the kinds of vectors found in _(1) and ]C(2) are

]_(1) )_(2)

(o,o,o)

(o, o,o). (5.83)

(o,o,

Since a component can have one of two values (e or o), the total number of types of vector

is N = 2n, where n is the dimension of the vector space. Thus, for 2-D, N = 4, and all
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possible types are accounted for in (5.82). Similarly, for 3-D, N = 8, and all possible types

are accounted for in (5.83).

We can use these results to deduce the following: When two vectors p, q E _(1) are

added, then p + q = k ¢ K: (1), because p + q _ e; thus no p, q C _(1) can be added to

produce another wave vector in K:(1). On the other hand, for p, q C K;(2), then p+q = k _ e;

if k <_ kmax, then k C K: (2). Thus, two p, q C K: (1) can be added together to produce another

k C /C (2). In (3.59) and (3.60) it was shown that any nonzero k C K: could be written as

the sum of two nonzero wave vectors p, q E K:; looking at the details there, we see that we

can also state that any nonzero k c/C (2) could be written as the sum of two nonzero wave

2vectors p, q C K_(2) for kma _ >_ 2. Thus, none of the k C/C (1) are dynamically coupled, while

all of the k E _(2) are coupled.

The relevance of all this for the simulation of homogenous turbulence is that we can

separate the system of Fourier modes identified by k C/_ into two mutually noninteracting

sets /C(1) and /C (2), but when we do so, only the set K: (2) contains dynamically interacting

modes, while the set /C (1) contains no dynamically interacting modes at all (the modes

associated with/C (1) are frozen). By restricting the dynamically interacting modes in a finite

model of homogeneous turbulence initially to k C _(2), we can then allow the restricted

system to 'expand' into a larger system by turning on the interaction between modes in/CO)

and K:(2), so that the final set of interacting modes is k E/CO) U K: (2) =/C.

We can assign an entropy to each of the isolated systems _(_) and _(2), which have Af (1)

and Af (2) modes, respectively, with Af (_) _ Af (2). The system /C (1) is actually a system of

Af 0) noninteracting subsystems, each containing only one mode. Since these modes do not

evolve, the number of states available to each isolated mode is n(k) = 1; the number of

states available to _(_) is no more than the product 1-IketC(_)n(k) = 1. The entropy of each

mode is In n(k), so that the entropy S (_) of the whole system of modes/C (1) is zero (this is

Nernst's theorem). However, the value of the energy (and other invariant values) locked in

these frozen modes is not necessarily zero.

The entropy of _(2) can be found using Table 5.1. Recall that the entropy is the global

minimum of the entropy functional in Table 5.1 and that the summations there are now over

all Af (2) interacting wave vectors k C _(2). The entropy is

S (2) = min{c_(/_ (2), ct,/3, 7)}

where

= a(/C(2), c_(2),/3(2),,y(2)),

o( c, Z, =

2 c (1 + In 7r) - _ In ¢(k, c_,/3, 7) • (5.85)
kEK:
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(Here, we have used iV = 2iV'.) If we add the two systems together to form K: =/(2 (1) t2 K_(2) ,

then the total number of k C K: is iV = iV(l) + iV(2).

Assume that the energy (and other invariant values) locked in the frozen modes _(1)

is proportional to those associated with the interacting modes/C(2); let the proportionality

factor be r (e.g., E (1) = rE(2)). The 'temperatures' (c_(2)) -1, (fl(2))-1, and (3,(2)) -1 are given

in the first section of this chapter; the pertinent expressions indicate that when expansion

from/(:(2) to _ occurs, the temperatures will drop by approximately (1 + r)/2. Therefore,

we see from Table 5.1 that

2 ¢(k,_(_)Z(_)_(_)). (5.86)¢(k,_,Z,_) _ 1+_

Expansion of K: (2) into _ will thus lead to the following change in entropy:

S = 2S (2) -iV(2)ln[2/(1 + r)], r >_ 0.

Clearly, if r _> 1, then entropy has increased. However, for 0 _< r < 1, it is unclear whether

or not entropy might decrease. That it never decreases can be shown in a more general

argument.

5.3.2 Proof of the Second Law

Here, we extend the proof of [Khinchin 49] to the case of systems with more than one tem-

perature. The value of the entropy for a given isolated subsystem K:j of modes is determined

by finding the global minimum of the entropy functionals given in Table 5.1:

sj = _(_cj,_j, Z_,_j). (5.8s)

Here, c_j, flj, and 3`j are the inverse temperatures that minimize a in (5.88), for any subsystem

j. Let us now unite the subsystems j = a and j = b to form the larger subsystem of

interacting modes ]_ab -- ]_a U ]_b.

The previously isolated subsystems ]_a and K:b had entropies Sa and Sb"

Sa -- cr(]t_a, OZa,/_a, 3`a)
S_ = _(tC_,_, Z_,Z_). (5.S9)

This new subsystem ]_ab will have its own inverse temperatures O_ab, _ab, and 3`ab, and entropy

Sab :

Sab --- Cr ( __,ab , OLab , 9ab , _/ab )

= _(tCa,_o_,ZaV,_a_)+ _(tC_,_, Za_,_a_)
>_ _(_Co,_a, Za,_o) + _(tC_,_, 9_,*_).
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The second line above occurs because a is a sum over independent k and can be partitioned

as desired, while the third line occurs because aa, _a, % and ab, Pb, % minimize the entropy

functionals related to _a and K;b, respectively"

<_
O-(K b,O b,flb,Tb) <_ cr(l b,OZab,flab,%b). (5.91)

In looking at (5.89), it is evident that (5.90) becomes

Sab _> Sa + Sb. (5.92)

This is a general result and applies to all the cases of ideal homogeneous fluid and mag-

netofluid turbulence considered in the present work.

Finally, one point that is often missed needs to be emphasized. The entropy of a closed

or quasi-closed (i.e., canonical) system has a fixed value, essentially S = In F, where F is the

number of 'states' available to the system in question. The entropy of such a system does

not 'increase to the largest possible value if the system is left alone,' because once the system

is 'left alone,' its entropy is fixed: the entropy is a function only of the number of accessible

states, not a function of the instantaneous location of the system point in phase space. Only

when two previously isolated systems, each with associated entropies (i.e., measures of the

number of available states of each isolated system), are united into a greater system, can

total entropy actually increase, as shown in (5.92) above.

References for Further Reading

Two of the best references on statistical mechanics and thermodynamics are [Khinchin 49]

and [Landau 80].

An early development of the concept of entropy in computer models of ideal turbulence,

similar to that presented here, was given in [Shebalin 82], and a more recent discussion

is given in [Shebalin 96] (where it is shown that the entropy function of [Carnevale 81,

Carnevale 82] is not generally commensurate with absolute equilibrium ensemble theory).



Chapter 6

Numerical Experiments

The basis of a statistical theory of ideal homogeneous turbulence has been given in the

preceding chapters. How well this theory works requires a comparison with results drawn

from numerical experiments. We must use numerical experiments, rather than physical

experiments, because ideal homogeneous turbulence is not physically realizable - no physical

fluid or magnetofluid experiment has zero dissipation throughout its experimental sample.

However, ideal turbulence is a model system whose equations differ from real ones only in

the absence of a linear dissipative term (there is still a linear term in ideal MHD when a

nonzero mean magnetic field is present). Although this linear dissipative term is critical, the

remaining nonlinear terms are identical for real and ideal sets of equations. This motivates

our desire for a comparison: A robust statistical theory of ideal turbulence may shed some

light on how to obtain a corresponding theory for real turbulence, which has thus far been
elusive.

Here we will present numerical results concerning all of the various cases of ideal homoge-

neous turbulence: Euler and ideal MHD turbulence, for both 2-D and 3-D. These numerical

simulations were done on various supercomputers, and the total central processing unit

(cpu) time used to generate the results to be described here was about 560 hours. This is

a substantial investment and calls for a clear presentation of the methods of research, the

results obtained, and the conclusions deduced; this is a prime motivator for this publication.

Numerical results will be presented in this chapter, and an explanation of the somewhat

surprising results will be given in the next chapter.

6.1 Numerical Method

The equations of motion to be solved are (3.44) and (3.45) for 2-D, and (3.15) and (3.16)

for 3-D. The general technique used to numerically solve these equations is called a 'Fourier

spectral transform method.' ('Spectral' refers to the coefficients, or 'spectrum,' of a Fourier

expansion.)

71
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The modal equations of motion have the form

d/)(k,t) = /_(U(t);k). (6.1)
dt

The term F(U; k) on the right side is nonlinear (except for a linear part that occurs in the
MHD cases for Bo -¢ 0). In what follows, when U or U(t) is used without a wave vector k

in the argument, it signifies the set of coefficients/)(k, t).

As an example, for the 2-D Euler case, we have U(k, t) = c?(k, t) and

p+q=k

/_(c)(t);k) = i _ i. p x q [@(p, t) ©(q, t)] . (6.2)
k,p, qCS

Evaluating terms such as this in k-space takes an inordinate amount of time - there are

O(N 2) coefficients c_(k) and each summation has O(N 4) terms, so that the total floating point

operation count is O(N6). Instead, the quantities/PC(P) and iqcb(q) are first transformed

by a fast Fourier transform (FFT) into the x-space quantities V¢(x) and Vw(x), then the

product v(x) = V¢(x) x Vw(x) is formed. Then we transform back by FFT to k-space:

v(x) _ "_(k) and form the result F(U; k) = ik. _(k).

In 2-D, the FFTs take O[(Nln N) 2] operations and the x-space nonlinear product takes

O(N 2) operations, so that the whole transform method takes O[(N 2 In N) 2] operations (where

N is the number of grid points in each dimension). The comparative efficiency between work-

ing solely in k-space and using a transform technique is thus O(N 6) versus O[(N21nN)2] •

using FFTs reduces the number of floating point operations by O[(N -11n N)2]. (The reduc-

tion is O[(N -1 In N) 3] in the 3-D cases.) Thus, while a direct evaluation of the (convolution)

sum (6.2) may be impractical for a numerical simulation, the transform method is not, and

in fact makes such simulations possible [Orszag 72].

The nonlinearity of (6.2) can introduce aliasing errors if care is not taken. Here, de-aliased

nonlinear terms were produced using the Patterson-Orszag shifted-grid method [Patterson 71],

which entails doing twice as many FFTs and setting kmax = v/2N/3 (this value of kmax re-

moves all but the single-aliasing errors). Specifically, for the 2-D Euler example,

-_(p, a) = ip¢(p,t)e _'p

qc(q, a) = iq&(q, t)e aq

_?(p, a) - FFT -_ v(x, a)

@(p, a) - FFT --+ w(x, a)

G(U; k, a) +-- FFT - v(x, a) x w(x, a). (6.3)

The transform cycle in (6.3) is done twice, with a = 0 and a = h = (Tr/N)(1, 1,1).

de-aliased nonlinear product is then found by:

F(U;k) = -2 [(_(U'k, 0) + e-ih'k (_(U;k,h)] W(k)

The

1, k _< k,_ax
W(k) = 0, k>k o (6.4)
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which removes the remaining single-aliasing errors. (The function W(k) ensures that the

values of all coefficients with k > kmax remain zero during the simulation.)

There is another method, called the '2/3' method, that requires only a single transform

cycle by setting kmax =- N/3. However, the number of de-aliased modes retained for a given

N in the Patterson-Orszag method is twice as many as in the '2/3' method for 2-D and

2v/2 _ 2.83 as much for 3-D simulations. Although the Patterson-Orzsag method requires

that two FFT tramsform cycles be done, which doubles the time needed to determine the

nonlinear terms (6.2), it makes up for this by allowing at least twice as many modes to be

retained in the simulation for a given value of N.

In general, the greatest portion of time in the numerical integration from one time-step

to another goes into the evaluation of the nonlinear terms such as (6.2). In this regard, a

time-stepping method was chosen so that the number of evaluations of (6.2) was minimized

per time-step. For ease of coding and to minimize required core memory, lower-order time-

integration schemes were also used.

The two time-integration methods used to solve the modal equations (6.1) were a second-

order Runge-Kutta method (RK2) [Potter 73] and a third-order 'partially corrected' Adams-

Bashforth method [Gadzag 76]. Time-step size At was fixed, so that after n time-steps,

t = tn = nat; also, tn+l = tn +At and tn+l/2 -- tn+At/2. In addition, let us use the notation

_2n = 5r(k, tn), fn = /_(U(tn);k), Un+l/2 = U(k,t_+l/2), and fn+l/2 = f(V(tn+l/2);k) The

RK2 method is

At-

_n+i/2 = u_ + 2 fn

_n+l = _tn -4- At/n+1�2. (6.5)

The RK2 method was used in the 2-D simulations and in a minority of 3-D simulations to

be described shortly. The RK2 method is 'self starting,' i.e., the necessary nonlinear terms

fn and fn+l/2 are computed at each time-step.

The AB3 method used has two parts: The first is an Adams-Bashforth predictor:

/kt [23/n- 16fn-1-_- 5/n-2] •Un+l = Un+ 12 (6.6)

The second part is an Adams-Moulton corrector:

/rid-1 = F (?_nd-1 ; k)

At

Un+l - _2_ + 12 [5/nd-1 "d- 8/n -- /n-l] •
(6.7)

Here, the/n+l are determined from the predicted coefficients _tn+l, found in (6.6), in exactly

the same way that the nonlinear terms fn+_/2 are determined from the coefficients/_+_/2 in

RK2: by using (6.3) and (6.4). The AB3 method is started at t = 0 by assigning

j_2 = 9_ = J_ = /_(_o;k). (6.8)
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Thus, AB3 is effectively started with a forward Euler method.

The time-step size was chosen for both the 2-D (N = 32) and 3-D (N = 16) runs to be

At = 0.001. Initial checks of the 2-D and 3-D codes were performed by explicitly checking

the values of a few selected coefficients for several time-steps, and the long-term behavior

of the codes was confirmed by the constancy of the integral invariants (to within canonical

fluctuations). A comparison between ensemble prediction and numerical determination of

the means and variances of the Fourier coefficients was thought to be another good test of

code viability, but this had the implicit assumption that ideal homogeneous turbulence was

ergodic. As the following discussion of results will show, this assumption was not correct.

6.2 2-D Simulations

We begin with 2-D simulations, run either on a Control Data Corporation Cyber 205 at

NASA Langley or on one of the Cray 2 supercomputers then at NASA Ames [Shebalin 89].

These simulations were performed on a 322 grid, with kmin -- 1 and kmax -- 15.08; again,

de-aliased nonlinear terms were produced using a shifted-grid method [Patterson 71]. Since

kmax -- 15.08, there are 227 independent modes for a 2-D Euler simulation, while there are

twice this, 454 modes, for a 2-D ideal MHD simulation. Thus, the phase space for these 2-D

Euler runs has 227 dimensions and for the 2-D ideal MHD runs has 454 dimensions.

The modal spectra for the various runs were initialized so that EK -- EM -- 0.51 The

modes were assigned random initial phase and satisfied

_(k)[ 2 = l_(k)[ 2 _ k 4exp(-2k2/k_)). (6.9)

Here, ko = 2 was used, although the exact value of ko did not matter, as the system quickly

evolved to 'thermodynamic equilibrium.'

Time-integration was performed with the RK2 method given in (6.5) and time-step size

was At = 0.001. (The Euler runs were approximately 0.13 seconds/At, while the MHD runs

were approximately 0.38 seconds/At.) A number of short runs were done, from t = 0 to t =

10 (10 4 time-steps), for preliminary analysis and to allow transients to subside. After this,

three runs were continued from t = 10 to t = 510 (5 x 10_ time-steps): NSP (an Euler run),

CAI (ideal MHD, Bo = 0), and CBK (ideal MHD, Bo = Bo_, with Bo = 1).

In order to determine expectation values for the modal spectra of two of these runs, the

entropy functionals defined in Table 5.1 were minimized with respect to a variable parameter

(_' for run NSP and g_ for CAI). At the minimum, _P'= _P = <_> and g_ = gM = (EM>.

Finding _P for run NSP allowed the inverse temperatures c_ and p to be found through (5.10)

and (5.11), respectively; in turn, finding EM for run CAI allowed a, ¢?, and 7 to be found

through (5.40), (5.41) and (5.42), respectively. In the case of run CBK, no minimization

is required because $M = g/2 = (E}/2, leading to 7 = 0, as is known beforehand. In

Figure 6.1 we show the entropy functionals or(g,) and a(R), corresponding to NSP and CAI,

respectively, where R = EM/(E- EM). In this Figure, we have reduced the number of

variables in the arguments of the functionals to display only the essential parameter. The
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minima are _P = 0.057397 and R = 1.0758 (_eM = 0.52178), for NSP and CAI, respectively,

while d priori we know R = 1 for CBK.

The 'invariants' for these runs are: _e and _2 for NSP; £, °r/c, and A for CAI; _ and 7-/c

for CBK. The means and standard deviations (std. dev.) with respect to time for the various

quantities are shown in Table 6.1.

NSP $ S2

Mean 0.50003 29.335 0.060871

Std. dev. 0.00001 0.0020 0.012804

CAI $ 7-/c A R

Mean 1.0068 0.23996 0.50000 1.0865

Std. dev. 0.0043 0.00002 0.00000 0.0677

CBK _ 7-/c A R

Mean 1.0015 0.0040135 0.013076 1.0025

Std. dev. 0.0009 0.0000045 0.001757 0.0736

Table 6.1 Parameters for 2-D runs, from t = 10 to t = 510. The predicted values are _P =

0.057397 for NSP, R = 1.0758 for CAI and R = 1 for CBK.

It is clear from this Table that the 'invariants' are invariant to within small fluctuations,

while the noninvariant quantities in each case fluctuate considerably (percent fluctuation -

100%xstd. dev./mean). In particular, the invariants fluctuate less than about 0.1%, while

_P and _g fluctuate about 20% and 7%/0, respectively. Also, ,4 has 0% fluctuation for CAI,

while it fluctuates about 13% for run CBK, where it is not an invariant.

We next compare the modal kinetic and magnetic energies determined by numerical

simulation with their canonical ensemble predictions. To accomplish this, the time-averages

and standard deviations of all modes in the runs NSP, CAI, and CBK were determined from

tl = 10 up to t2 = 510, for a maximum period of r = t2 - tl = 500. In these 2-D runs, the

primary modes were those of scalar vorticity c_(k) and magnetic scalar potential _(k).

Over a period of time 7, the averages (Co(k))avg,r and standard deviations <Co(k))std, r of

the vorticity coefficients are

<_(k))_,g,_ = 5J(k) dt
T 1

(6.10)

- 2 1 ftt2 &(k) (Cz(k))avg.r 2(w(k))_td'_ = T 1 -- at. (6.11)

Similarly, the averages <&(k))avg,_ and standard deviations <_(k))std, _ with respect to time
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Figure 6.1: Entropy functionals - top: NSP, bottom: CAI; the minima are _ = 0.057397

and R = 1.0758 for NSP and CAI, respectively.
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of the magnetic potential coefficients are

(8(k))_vg,7 - g(k) dt
T

(a(k))_td, 7 -- _(k)- (_(k))_vg,7
7- 1

77

(6.12)

dt. (6.13)

Note also that the averages and standard deviations (squared) defined here for each coeffi-

cient can obviously be split into averages and standard deviations (squared) of the real and

imaginary parts of the coefficients individually, if so desired.

l_avg,7 ErKanThe average _-'K (k), random (k), and total E_t(k) kinetic energies associated with

each mode over a given period of time r are

Eav9,7 k-2 2K (k)= I(&(k))a,,9,__ (6.14)

Eran,r _ k-2u (k) (&(k))_td, 7 (6.15)

Etot, r l_2av g ,7 l_r an, rK (k)= _A" (k)+_g (k). (6.16)

Similarly, the average (or coherent) _-_M17avg'r(k), random _-_l_4Fran(k), and total EMtOt(k) magnetic

energies associated with each mode over a period r are

Eav9,7 k 2 2M (k) = I(&(k))avg,7 (6.17)

E ran'7(l_] : k 2 <5_(k)) 2 (6.18)/_[ kxx} std,T,T

EtOt,7 lz_avg,r p,_n,T tt._ (6.19)M (k)= "-'M (k)+--M ,-w.

Adding the kinetic and magnetic parts gives the modal total energy:

l_Tav9,'r l_?av9,rE avg'7 (k) : _K (k) + _M (k)

= EK (k)Eran#(k) ran,r F.ran,r

E t°t''_ (k) Ft°t'7 ,_tot,7= "-'K (k)+_M (k).

(Here we have used the relations @(k))std, 7 = I (&(k))std, 7 land (&(k))std, _ :

(6.20)

(6.21)

We can now plot these time-averaged modal energies versus the 2-D vector k and compare

them to each other and to canonical ensemble predictions. This is done in Figures 6.2, 6.3,

6.4, and 6.5. Figure 6.2 consists of modal total energies (6.20), (6.21), and (6.22) averaged

from tl = 10 to t2 = 60 (r = 50) for runs NSP, CAI, and CBK. Figure 6.3 consists of modal
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total (i.e., kinetic) energies for run NSP averaged from tl = 10 to t2 = 510 (7 = 500).

Figures 6.2 and 6.3 have four parts: The first three represent numerical simulation results:

1) EaVg,_(k), 2) Eran'_(k), and 3) Et°t'_(k). Number 4 is the ensemble prediction for modal

total energy E t°t'_-(k); this is purely random, since according to canonical ensemble theory

E avg'_ (k) = 0, so that E t°t''r (k) = E ran'7 (k).

In Figure 6.2 (_- = 50), some of the modal average energies seem rather large. In looking

at Figure 6.3 (T = 500), we see that, for run NSP at least, those modal average energies

which appeared large at 7 = 50 have become considerably smaller. Also, Figure 6.2 (v =

50) clearly shows that for run CBK (Bo = 1) it is only those modes with kx = 0 that have

appreciable modal average energies. This is due to the presence of Alfv6n waves, which

make the phase _ of the Fourier coefficients continually sweep through all possible values

0 _< _ < 27r with the Alfv6n frequency kXBo = kx for each mode corresponding to k. (Alfv6n

waves are discussed in subsection 3.2.3.)

Figures 6.4 and 6.5 consist of modal kinetic and magnetic energies averaged from tl =

10 to t2 = 510 (T = 500) for runs CAI and CBK. Figures 6.4 and 6.5 have four parts. The

first three represent numerical simulation results: 1) _K_av9'_(k) or _M_avg'7-[l'_'_'W,2) _K_ran'_(k) or
Era_TM (k)" and 3) _tot,_ ptot,_ ,_an,--g (k) or --M (k). Number 4 is the ensemble prediction for (k), _-_M

_. b-?t°t, T_K (k); again, this is purely random according to canonical ensemble theory.

In looking at Figure 6.3 (run NSP, T = 500), we see that the time average part of the

Fourier coefficients has become much smaller than what they were in Figure 6.2 (run NSP, T

= 50). In Figure 6.3 (run NSP, _- = 500), it is also clear that the random part produced by

the numerical experiment is quite similar to the ensemble prediction. However, in looking at

Figures 6.4 and 6.5, corresponding to the two ideal MHD runs CAI and CBK, respectively,
l_-?avg,7 _avg,Twe see that there is a significant amount of energy in _K (k) and _M (k), particularly

at the lower Ikl values. In fact, these have not changed much from Figure 6.2 (runs CAI and
l_-?avg,_- avg_-, = E M (k) areCBK T 50). Since the canonical ensemble prediction is that -g (k) and

identically zero, something is amiss.

It may be asked whether or not the time allowed for the numerical simulations to run

was long enough. To answer this question, we look at the evolution of the total coherent

energy:

EC(T) = _-_Fa_g, __--_If (k) (6.23)
k6/(::'

ECM(T) _ E l_avg'_--M (k). (6.24)
k6K7

For runs NSP, CAI, and CBK, the coherent energies, EC(_ -) and E_(T), have been averaged

from _- - 50 to T = 500, in steps of 6T = 50. If these running averages do not appear to be

converging to some constant value, then we have not run the simulations long enough; if they

do appear to converge to some constant value, then we may believe that we have averaged

long enough. The running averages of the coherent energies EC(T) and EC(T), with respect

to averaging time 7, is shown in Figure 6.6.



6.2. 2-D SIMULATIONS 79

Figure 6.2: Runs NSP, CAI, and CBK - 2-D time-averaged modal energies: 1 average, 2

random, 3 total; number 4 is the ensemble prediction, which is purely random; averaging

time: T = 50.
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Figure 6.3: Run NSP - 2-D Euler time-averaged modal kinetic energies: I average, 2 random,

3 total; number 4 is the ensemble prediction, which is purely random; averaging time: _- =
500.

It is clear in Figure 6.6 that simulations NSP, CAI, and CBK have been run long enough

so that the stationary values of the coherent energies are apparent. In the case of run NSP,

the coherent energy EKC(_-) appears to be converging monotonically to zero. In this 2-D Euler

simulation, time-averages appear to match the ensemble prediction. However, in both of the

runs CAI and CBK, the coherent energies Ec(T) and ECM(_-) are not converging to zero,

but instead to some significantly nonzero values. Thus, for runs CAI and CBK, numerical

time averages do not appear to match the ensemble prediction. In these 2-D ideal MHD

simulations, we must therefore conclude that we have evidence for nonergodicity in ideal

homogeneous, MHD turbulence.

To study the implications of this more closely, we can examine the behavior of single

Fourier coefficients. A Fourier coefficient has a real and an imaginary part, and we can plot

one versus the other from tl = 10 to t2 = 510; this produces a 'random walk' on a 2-D phase

surface. In the case of run NSP, the resulting plot is a projection of the 227-dimensional

phase trajectory onto a 2-D plane, while for runs CAI and CBK, the resulting plot is a

projection of the 454-dimensional phase trajectory onto a 2-D plane. Here, we will look at

only the ideal MHD runs CAI and CBK, since it is in these runs that nonergodicity appears
to be manifested.

For run CAI, Figure 6.7 shows the evolution of the real versus the imaginary parts of

cb(k) for k = (1,0) and k = (0,1), while Figure 6.8 shows the evolution the real versus the

imaginary parts of)(k) = 5(k), also for k = (1,0) and k = (0,1). Analogous plots for run

CBK are given in Figures 6.9 and 6.10. (Absolute scales in these Figures are omitted as
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Figure 6.4: Run CAI - 2-D ideal MHD (Bo = 0) time-averaged energies: 1 average, 2

random, 3 total; number 4 is the ensemble prediction, which is purely random; top: kinetic,

bottom: magnetic; the scale is different between top and bottom; averaging time: _- = 500.
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Figure 6.5: Run CBK - 2-D ideal MHD (Bo = 1) time-averaged energies: 1 average, 2

random, 3 total; number 4 is the ensemble prediction, which is purely random; top: kinetic,

bottom: magnetic; the scale is different between top and bottom; averaging time: r = 500.
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Figure 6.6: Coherent energies for three cases of 2-D ideal turbulence: NSP (Euler), CAI

(MHD, Bo = 0), and CBK (MUD, Bo = 1) - Kin: kinetic; Mag: magnetic.

being unimportant to the discussion at hand.) These four Figures clearly show that the

phase trajectories for ideal MHD, with either B,_ = 0 or Bm = 1, are not centered on the

origin in phase space, as predicted by canonical ensemble theory. This gives further concrete

evidence for nonergodicity in 2-D ideal MHD turbulence.

The main difference between runs CAI and CBK is that CAI has no mean magnetic field

present (Bo = 0), while CBK does have a mean field (Bo = 1). In the discussion in subsection

3.2.3, it was shown that if Bo = Bo:_, with Bo ¢ 0, then Alfv_n waves are present for those

modes with kx =/=0. In the limit of large Bo, equation (3.54) describes the modal dynamics

and the appearance of the trajectories in Figures 6.9 and 6.10 would be purely circular. For

moderate values of Bo, we would expect that nonlinear modal interactions would modulate

the amplitude of the Alfv_n waves, and that is what we see in Figures 6.9 and 6.10, for those

modes with Bo -¢ 0. These 'nonlinear Alfv_n waves' appear for all modes with kx -¢ 0 when

Bo ¢ 0, and not in those modes with k= = 0, as indicated by Figures 6.9 and 6.10.

The presence of nonlinear Alfv_n waves means that the associated modal averages will

be zero. This explains the series of spikes for run CBK along the ky axis in Part 1 of Figure

6.2, which gives the average modal energies for T = 50. In looking at Figure 6.5, it is clear

that these spikes are still there along the ky axis, and nowhere else. (The perspective of

Figure 6.5 is essentially down the ky axis; the perspective in Figure 6.2 more clearly shows

the 'fence of spikes' along the ky axis.)
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Figure 6.7: Run CAI: 2-D ideal MHD (Bo = 0), projection of phase trajectory; top: C_R(0, 1)

vS c_i(0, 1), bottom: &R(1, 0) vs c_i(1, 0).
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6.3 3-D Simulations

A series of 3-D simulations was also undertaken, run on a Cray YMP at NASA Lang-

ley [Shebalin 94]. These simulations were performed on a 163 grid, with kmin = 1 and

kmaz -- 7.542; de-aliased nonlinear terms were again produced using a shifted-grid method

[Patterson 71]. Since kma_ = 7.542, there are 428 independent modes for a 3-D Euler simula-

tion, while there are twice this, 856 modes, for a 3-D ideal MHD simulation. The phase space

for 3-D Euler runs thus has 428 dimensions and for 3-D ideal MHD runs has 856 dimensions.

The initial condition were as described by (6.9).

Time-integration was performed with the AB3 method, given in (6.6) and (6.7), and

time-step size was At = 0.001; a few cases were rerun with the RK2 method (6.5), also with

At = 0.001; the results were essentially the same. Although AB3 required slightly more

run-time memory than RK2, the computer execution time per At was about half as long for

AB3 as for RK2:0.12 sec/At vs. 0.25 sec/At for the Euler runs, and 0.35 sec/At vs. 0.71

sec/At for the ideal MHD runs. Overall, AB3 seems to be the more efficient method.

Four 'short' runs were done, from t = 0 to t = 250 (2.5 × 105 time-steps), and four 'long'

runs from t = 0 to at least t = 750 (7.5 × 105 time-steps). The runs are as follows (at the

end of the run identifiers, 'A' and 'R' stand for AB3 and RK2, respectively). The short runs,

which will not be discussed in much detail here, were: EIA (Euler, HK ,-_ 0), E2R (Euler),

MIR (ideal MHD, Bo = 0), and M3A (ideal MHD, Bo = 0, kmin = 2). The long runs were:

E2A (Euler), M1A (ideal MHD, Bo = 0), M2A (ideal MHD, Bo = 0, small HM), and M4A

(ideal MHD, Bo = Bo_, with Bo = 1). The characteristics of these runs are shown in Table

6.2. The time-step size (At = 0.001) was sufficiently small so that the integral invariant

values listed in Table 6.2 varied only by a few parts per million during any of the runs.

2
Run kmi n Bo Time £ 7-/K 7/C 7-/M

EIA 1 -.. 250 0.5000 -0.04443 ......

E2A 1 .-. 750 0.5000 3.142 ......

E2R 1 -.- 250 0.5000 3.142 ... ...

MIA 1 0 1000 1.0000 • .. 0.1326 0.2129

M1R 1 0 250 1.0000 ... 0.1326 0.2129

M2A 1 0 750 1.0000 ..- 0.1326 0.09973

M3A 2 0 250 0.9983 ... 0.1258 0.09899

M4A 1 1 750 1.0000 ... 0.1326 ...

Table 6.2" Parameters for the 3-D runs.

In Table 6.2, E2A and E2R had the same initial conditions, as did runs MIA and MIR;

these pairs of runs were done to compare the two different numerical integration methods,

AB3 and RK2. As will be seen ahead in Tables 6.3 and 6.5, the two different methods

produce essentially the same results (AB3 being twice as fast per time-step as RK2). Runs
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Figure 6.11" Time evolution of magnetic helicity for 3-D ideal MHD runs M2A (Bo = 0) and

M4A(Bo=

M2A, M3A, and M4A had the same initial conditions, except that Run M3A had the k 2 =1

2 k2coefficients set to zero; since M3A had kmi n = 2, the =1 coefficients did not evolve with

time. Run M3A was used to test the effect of raising kmin from 1 to 2; as is evident in Tables

6.3 and 6.5, there were some slight effects, but no major ones.

Although runs M2A and M4A had the same initial conditions, run M4A had a mean

magnetic field present (Bo = 1), while run M2A did not (Bo = 0). The expectation, from

canonical ensemble theory, was that the magnetic helicity HM would be invariant for M2A

but not for M4A. This prediction was borne out, as is clearly seen in Figure 6.11.

In Table 6.3 we show the inverse temperatures c_,/5, and 7 associated with each of the runs

in Table 6.2. The inverse temperatures are parameterized by D, tbr 3-D Euler turbulence,

and by EM, or equivalently by R = EM/gI(, for 3-D ideal MHD turbulence, as detailed in

Section 5.1. Ensemble predictions and time averages were seen to be qualitatively different in

the 2-D runs just discussed, and, as will be seen shortly, they are also qualitatively different
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in the 3-D runs.

In the 3-D runs, the inverse temperatures a,/_ and 7 were determined by minimizing the

root-mean-square (RMS) difference between ensemble and simulation modal energies: for

the Euler runs, Y2was varied to find a value f2RMS which produce minimization, and for the

ideal MHD runs, R was varied to find the value RRMS which provided minimization. These

values of f2RMS and RRMS are given, along with the corresponding inverse temperatures c_,

/_ and 7, for each of the runs in Table 6.3.

Run _'_RMS RRMS O_ /3 "7

E1A 17.08 --. 2.624 0.006825 .--

E2A 23.74 -.. 15.58 -2.062 ...

E2R 23.79 -.. 15.41 -2.035 ...

M1A • • • 1.506 1.774 -0.7825 -1.682

M1R ... 1.506 1.773 -0.7824 -1.681

M2A • • • 1.206 1.547 -0.7142 -1.451

M3A ..- 1.301 1.616 -0.7205 -2.131

M4A ... 1.000 1.401 -0.7075 -. •

Table 6.3: Inverse temperatures for the 3-D runs.

Although the full 3-D spectra are not easily displayed as the full 2-D spectra (see Figures

6.2, 6.3, 6.4, and 6.5) we can still get a crude measure of how well canonical predictions and

numerical averages compare. This is done by defining 'directionally averaged' power spectra

as follows:

1 E (fi(k) 2)avg (6.25)
Ek(k) -- 2nk ikl= k

1 y_ < l_(k)2}avg. (6.26)
E_(k) - 2nklkl=k

The quantity nk is the number of kinematically nonzero modes with Ikt = k and the averaging

time is the total simulation time for the run in question. Figure 6.12 shows the directionally

averaged power spectra for runs M2A and M3A. Here we see two things: First, the value of

k,_in is not critical (km_n = 1 for M2A and k,_in = V/2 for M3A). Second, there is a small but

nonnegligible difference between canonical predictions and numerical averages, which bears

further investigation. (In fact, it was the persistence of such differences in early 2-D MHD

simulations [Shebalin 82, Shebalin 83] which first indicated the need for a closer look.)

At this point, we again study the behavior of single Fourier coefficients with respect to

time. In Figure 6.13, we plot real versus imaginary parts for each of the coefficients 5Jy(1, 0, 0),

C_z(1, 0, 0), by(l, 0, 0) and bz(1, 0, 0), from tl : 1 to t2 = 1000 for run M1A. This is an MHD

run, so the phase space has a dimension of 856. It is clear from Figure 6.13 that nonergodicity
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is again present, as significant mean-values (in comparison with the standard deviations) are

apparent. Also, in Figure 6.13, the coefficients appear to have the relationships

&y(1, 0, 0)

by(l,0, 0)

-iC_z(1, 0, 0)

-il)z (1, 0, 0). (6.27)

We also have the approximate similarity

&y(1,0,0) _ 1)y(1,0,0)

C)z(1,0,0) _ [)z(1, 0, 0) . (6.28)

In fact, all coefficients with k 2 = 1 in runs M1A and M2A (Bo = 0) have this strong

relationship. A quantitative measure of the strength of these apparent relationships can be

achieved by finding the average modal correlation, defined as

1 _ 1 f0 r _(k,t). @*(k,t)
C(v, w; k 2) = n(k2 ) Ikl2=k2 7- I_?(k, t)l l'_*(k, t)l dt. (6.29)

Here, n(k 2) is the number of coefficients with a set value of k 2, and _- is the averaging time.

We draw v and w from the set b, j, u and w; the average modal correlations, as defined by

(6.29), for the first three values of k 2 are given in Table 6.4.

Run Bo _- k 2 C(j,b;k 2)

1 0.990

MIA 0 1000 2 0.558

3 0.439

1 0.954

M2A 0 750 2 0.535

3 0.427

1 0.0180

M4A 1 750 2 0.00456

3 -0.0154

C(u, b; k 2)

0.896

0.283

0.236

0 776

0 269

0 231

0 239

0215
0 211

k2)
0.769

0.0497

0.0258

0.581

0.0417

0.0208

0.0745

-0.00322

-0.0195

Table 6.4: Average modal correlations versus k 2 for three 3-D ideal MHD runs.

It is clear in looking at Table 6.4 that the k 2 =1 modes are strongly correlated for Bo =

0, but not for Bo = 1. The average modal correlations between j and b and between u and

b for k 2 = 2, 3 are decreasing but still substantial for Bo = 0; this is a reflection that HM

and He are invariants for Bo = 0. In contrast, the correlation for k 2 = 2, 3 between u and

w for Bo = 0 is negligible (a reflection that HK is not an invariant for ideal MHD). In the

Bo = 1 case, only u and b appear correlated, and then only moderately; fbr Bo = 1, He is

invariant but HM and HK are not. These results suggest that u _ V x u and b _ V x b,
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i.e., the fields u and b are tending toward force-free configurations, but only for Bo = 0 and

only for the lowest values of k 2. We thus have a 'low-k 2, quasi-force-free flow' as a long-term

state of an ideal magnetofluid with no mean field. (Data allowing similar conclusions for the

Euler runs were not gathered.)

Eg E5 Hg Hg Hg
Run

E1A 0.00301 .... 0.00110 ......

E2A 0.0416 ... 0.305 ......

E2R 0.0413 ..- 0.303 ......

M1A 0.0880 0.179 .. • 0.0364 0.177

MIR 0.0919 0.172 -.. 0.0365 0.170

M2A 0.00562 0.0656 .. • 0.0158 0.0635

M3A 0.00464 0.0542 ... 0.0126 0.0368

M4A 0.00146 0.00148 • • • 0.000421 0.0000955

Table 6.5: Coherency for 3-D runs for _- = 250.

Coherent energies for the 3-D runs can be defined in exactly the same way as for the 2-D

runs, i.e., by (6.23) and (6.24). Furthermore, coherent helicities can be similarly defined,

by using the time-averaged values of the Fourier coefficients in their calculation. Table 6.5

presents the coherent energy and helicity values for an averaging time of _- = 250. Runs

MIA and MIR, in particular, appear to have a substantial amount of coherency - about

27% in both energy and cross helicity, and 83% in coherent magnetic helicity!

The high levels of coherent energy at _- = 250, however, may decrease as the simulations

are allowed to run longer in time. Figure 6.14 shows values of the coherent energies for

the runs which ran to at least t = 750. In this Figure, the coherency in runs MIA and

M2A appears to have reached a stationary value, while the coherency of runs E2A and M4A

appears to be on the verge of reaching asymptotic steady values. In the case of run E2A,

the behavior of the coherent energy during the time covered by Figure 6.14 is approximately

fit by the following formula:

E C _ 0.012 + 0.033 e -t/237. (6.30)

Thus, the coherent energy for run E2A seems to be asymptotically approaching E c _ 0.012,

or 2.4% of the total energy of run E2A, as t -+ oc.

6.4 Discussion of Numerical Results

Combining these results with 2-D results, it is clear that ideal turbulence has, in most cases, a

significant amount of 'coherent energy' (a statistically stationary nonzero value is significant
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Figure 6.13: Run M1A: 3-D ideal MHD (Bo = 0), projection of the phase trajectory; top"

real vs imaginary parts of c_y(1,0,0) and Cbz(1,0, 0)" bottom: real vs imaginary parts of

l)y(1, 0, 0) and 1)z(1, 0, 0).
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because canonical ensemble theory predicts that the value is identically zero). In other words,

there appear to be coherent structures present in ideal homogeneous turbulence. There is an

apparent correlation between coherent energy and the absolute value of the other invariants

in a given run. For example, as Table 6.2 shows, runs M1A and M2A share the same values

of E and Hc, but different values of HM. Run M1A has the higher value of HM, and also

more coherent energy, as Figure 6.14 shows.

Furthermore, although run M4A has the same values of E and He as runs M1A and

M2A, it has essentially zero magnetic helicity HM, as shown in Figure 6.11. It also has the

lowest amount of coherent energy of the 3-D runs, as indicated by Figure 6.14. However, the

coherent energy of run M4A can only be locked into the kx = 0 coefficients, since all other

coefficients can be thought of as combinations of nonlinear Alfv_n waves, and their averages

naturally tend to zero. (That 3-D run M4A is tending to a nonzero value of coherent energy

is supported by Figure 6.6, in which the analogous 2-D run, CBK, clearly has reached a low,

but nonzero stationary value of coherent energy.)

In all of these cases, 2-D and 3-D, the anomaly is not the run that has nonzero coherent

energy, but rather the run that has (or is clearly headed toward) a value of zero. There

is only one case in which canonical predictions and numerical averages appear equal and it

is the 2-D Euler case, represented here by run NSP. In looking at Figure 6.6, we see that

the value of coherent energy for run NSP is heading monotonically to zero. This reversal

of expectations is the central and surprising result of the numerical work detailed in this

chapter. The question then arises: Why are the canonical ensemble predictions not the

same as the time averages for all cases of ideal turbulence, except for 2-D Euler turbulence?

In other words, how does nonergodicity arise in ideal homogeneous turbulence?

The answer to this question is given in the next chapter.

References for Further Reading

The numerical results cited in this chapter are drawn from [Shebalin 82], [Shebalin 83],

[Shebalin 89], and [Shebalin 94] (primarily from the latter two references). Independent

work on ideal 3-D MHD turbulence was done by [Stribling 90], although the Bo = 1 case

was not discussed and time averages were not taken.

A discussion of spectral methods is given in [Gottlieb 77], [Canuto 88], and [Boyd 01], while

general discussions on numerical integration of differential equations can be found in many

sources, including [Potter 73] and [Iserles 96].



Chapter 7

Broken Ergodicity

The statistical theory and computational study of ideal homogeneous turbulence has been

laid out in the preceding chapters. The comparison of theoretical predictions with numerical

results presented in the last chapter indicates that there is a significant mismatch between

the two, which challenges the assumption of ergodicity implicit in the statistical theory. In

the current chapter, we will see why this implicit assumption is generally incorrect. In what

follows, we will demonstrate that ideal homogeneous turbulence is non-ergodic, except in the

2-D Euler case, and that this situation is caused by dynamically broken symmetry. Thus,

ideal homogeneous turbulence has, inherent in its dynamics, a broken ergodicity.

Symmetry Under P, C, T

The classical symmetries are parity, or space reflection, P: x --+ -x; charge reversal C:

q --+ -q; and time reversal T: t _ -t. (In addition, we can include the identity operation

I.) The effect of P, C and T on u, oa, b and j, as well as on the helicities HK = (u,w)/2,

He = (u,b)/2 and HM = (a,b)/2, is given in Table 7.1. In Table 7.1, '-' or '+' signs

indicate that the quantity in question does or does not, respectively, change sign under P,

C, orT.

The energies EK = (u, u)/2 and EM = (b, b)/2, the enstrophy f_ = (w,w)/2, and the

mean-squared magnetic potential A = (a, a)/2 are all positive-definite quantities and thus

unaffected by P, C, and T: EK, EM (and thus E = E_ + EM), ft, and A behave like scalars

under P, C or T. Since it will be pertinent shortly, the inverse temperatures c_ associated

with E in all cases of ideal turbulence are also scalars under P, C, or T, as can be seen in

examining the relationships (5.10), (5.25) and (5.57). Similarly, examining (5.11) and (5.42)

reveals that the inverse temperatures fl - associated with f_ in the 2-D Euler case - and 7 -

associated with A in the 2-D ideal MHD case - are also scalars under the classical symmetry

transformations.

The helicities, however, behave differently. As Table 7.1 shows, the helicities Hi (i =

K, C, M) behave like pseudoscalars under P; He also transforms like a pseudoscalar under

C. Thus the helical invariants HK, Hc, and HM of ideal homogeneous turbulence are

97
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I P C T

u + - + -

w + + + -

b + + - -

j,a + - - -

HK + - + +

Hc + - - +

HM + - + +

Table 7.1: Effect of the classical symmetry transformations P, C, and T on the signs of

various quantities.

pseudoscalars under at least one of the classical symmetry transformations. If we look at

the inverse temperatures associated with the various helical invariants, we see that they, too,

are pseudoscalars:

3-D Euler, eq. (5.26):

2-D MHD, eq. (5.41):

3-D MHD, eq. (5.58):

q_K
--- -- OL

_2

_'_C
/_=-2 a

£M

gr_C
_=--2

'_'M

_' -- 2EM

eq. (5.59)" 7 = 7-/M a (7.1)

The pseudoscalar nature of the inverse temperatures, on the left sides of the eqt_ations in

(7.1), follows because, on the right sides, the inverse temperatures a (associated with total

energy), as well as the energies and the enstrophy, are all scalars under P, C, or T, while

the helicities are pseudoscalars. The net result is that _HK, _Hc, and 7HM are all scalars.

Thus, P, C, and T do not affect the canonical probability densities (4.30).

An equivalent statement is that, in forming an expectation value (see Section 4.7), all of

phase space is averaged over, i.e., regions of phase space associated with both signs of a given

helicity are to be found in the domain of integration. This guarantees that the canonical

ensemble theory of ideal homogeneous turbulence is invariant under the classical symmetries

P, C, and T.
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Broken Symmetry

It can readily be shown that P, C, and T do not affect the form of the evolution equations

of ideal turbulence:

Ot
= Vx (uxw+jxB)

0B
= V × (u × B). (7.2)

Ot

Thus, the evolution equations (7.2) of ideal turbulence, as well as the canonical probability

functions, are unaffected by P, C, or T.

However, this theoretical symmetry is not duplicated in any realization of ideal homo-

geneous turbulence containing a helical invariant. Once the system, as represented by a

numerical model, is given an initial condition, it is also given a fixed sign of the correspond-

ing helical invariant. The evolving system maintains the values of all associated invariants

and their signs to within canonical fluctuations. The symmetry in the theory is not exhibited

dynamically, and is thus called a broken symmetry.

In phase space, this broken symmetry is manifested in the presence of effectively disjoint

components. Although canonical probability densities give finite probabilities to the appear-

ance of the system point anywhere in phase space, if the invariant helicity has a magnitude

large compared to canonical fluctuations, the probability that the system point will travel

from a component with positive helicity to one with negative helicity is effectively zero. (In

other words, the components are not fuzzy enough to have statistically significant overlap.)

In those cases of ideal homogeneous turbulence that possess a helical invariant, we can

define a set-theoretic characteristic function, which indicates disjointness. Let hi = Hi/Hi I,

i = K, C, M, for Hi _ 0, and hi = 0, i = K, C, M, for Hi = 0; then define

1

1

= 2 - (7.3)

Thus, X + = 1 if the system point is on the positive helicity component and 0 if it is not.

Similarly, )/_- = 1 if the system point is on the negative helicity component and 0 if it is not.

If hi = 0, then X + = X +, and in all cases we have X + + X + = 1.

For every invariant helicity Hi :/= O, the characteristic functions (7.3) tell us that the

disjointness of phase space increases by a factor of two. The number D of disjoint components

is therefore D = 2 N, where N is the number of nonzero helical invariants present. The phase

space structures of the different cases of ideal homogeneous turbulence are given in Table

7.2.

Table 7.2 now helps explain the high levels of coherent energy seen in Table 6.5 and

Figure 6.14. The highest levels are in the 3-D ideal MHD runs, such as M1A and M2A,

whose phase spaces have four disjoint components: M1A, in particular, has a stationary



100 CHAPTER 7. BROKEN ERGODICITY

Case Bo Invariants D

2-DEuler - E,_ 1

3-D Euler - E, HK 2

2-D MHD 0 E, He', A 2

2-D MHD 1 E, Hc 2

3-D MHD 0 E, Hc, HM 4

3-D MHD 1 E, Hc 2

Table 7.2: Phase space structure in ideal homogeneous turbulence (Hi ¢ O, i = K, C, M);

D is the number of disjoint components.

coherent energy that is about 19% of the total energy, as indicated in Figure 6.14. Run M2A

has a coherent energy that is about 6% of the total available energy, as also seen in Figure

6.14. In Table 6.2, we see that the major difference between the two runs is that MIA has a

value of HM that is more than twice that of run M2A. Although MIA and M2A have phase

spaces with four disjoint components, the components in MIA may be thought of as being

'further apart.'

7.3 Coherent Structure

Classical ergodic theory ([Khinchin 49, pp. 19-38], [Sinai 94]) states that a statistical system

is ergodic if and only if it its phase space does not consist of disjoint components (this is

Birkhoff's theorem). In ideal homogeneous turbulence with helical invariants, phase space

has, as we have just seen, either two or four disjoint components. Thus, ideal homogeneous

turbulence with helical invariants is nonergodic. The symmetry of the governing theory, as

we have also seen, is dynamically broken by the presence of helical invariants. The concepts

of broken symmetry and nonergodicity are combined when ideal homogeneous turbulence

with helical invariants is said to display broken ergodicity, a term first used by [Palmer 82].

When a system has broken ergodicity, there is an underlying structure of disjoint com-

ponents in phase space. If the system point is allowed to range over all components (as it

does in an ensemble prediction), then modal ensemble averages are, by construction, auto-

matically zero. However, in a dynamical time-average, as found by numerical simulation, the

system point can range over only one component, and modal time-averages are not required

to be zero. This leads to nonzero coherent energy; .combined with the otherwise chaotic

behavior of the Fourier modes, this indicates that these modes are random variables with

nonzero means. The structure in either k-space or x-space associated with these nonzero

modal means may be thought of as a coherent structure.

Therefore, broken ergodicity is equivalent to coherent structure in ideal homogeneous

turbulence with helical invariants.
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7.4 References for Further Reading

A mathematical presentation of symmetry and invariance in nonlinear dynamical systems

can be found in [Golubitsky 88].
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Chapter 8

Epilog

The primary purpose of this work has been to present the statistical theory of ideal homoge-

neous turbulence. This has been done in the preceding chapters; the principal quantitative

result found was that ideal turbulence with a helical invariant exhibits broken ergodicity.

Thus, the assumption of ergodicity implicit in canonical ensemble theory is incorrect, and

any predictions of this theory are only approximate. Full correctness could be restored if

ensemble predictions were made by integrating only over those parts of phase space that had

a definite sign to a given helical invariant. How to do this is not clear (it may not even be

possible) because ensemble predictions are made at the level of a mode, and modal helicity

appears unrestricted in sign, as opposed to the sum of all modal helicities, which has a fixed

sign.

Nevertheless, the discovery of broken ergodicity, and its corollary, coherent structure, is

the significant result in the theory of ideal homogeneous turbulence. The question arises: Is

broken ergodicity manifested in real, homogeneous turbulence?

8.1 Ideal Versus Real

In ideal turbulence, there is no physically imposed length scale, so that numerical simulations

on a relatively small number of grid points are sufficient, as long as there are enough modes

to ensure statistical behavior. This is equivalent to stating that the ratio p = kmaz/kmin

need only be moderate. If we take k,_in = 1, then ensemble predictions of modal values can

be renormalized so that any reference to explicit grid size disappears.

As an example, consider (4.40), the 2-D Euler prediction for modal vorticity. If we define

= k/kmaz, 6z = ct/kmax and /_ = /3, the expectation value of modal vorticity can be

rewritten as

= + (8.I)

All other modal ensemble predictions can be renormalized in the same way. The result is

that we always have 0 < ]c _< 1; increasing kmax only adds more points between 0 and 1, but
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does not change the shape of the curve (8.1).

In real homogeneous turbulence, the situation is completely different, because the dissi-

pation coefficients u and _ (viscosity and resistivity, respectively) set the size of the smallest

length-scales. Consider Navier-Stokes turbulence (Euler turbulence with a 'switched-on' vis-

cosity, u > 0). If it is stationary and dissipative, there is a balance between energy input at

the largest scales and dissipated at the smallest scales; as is customary, let us call the energy

being dissipated per unit density and unit time c. If there is no energy input, then the

turbulence merely decays from some initial state, and c = IdE/dtl. As is well known, there

is a dissipation wave number kD _ (c/P3)1/4; since IdE/dtl = 2u_ = e, as (3.75) shows, then

kD "_ (_/p2)1/4. It was shown in [Kolmogorov 41] that, for low viscosity, at length scales in-

termediate to the largest and the smallest scales of a flow, the energy spectra integrated over

direction in k-space was E(k) _ e2/3k -5/3. Although many physical experiments have borne

this law out, none of the energy spectra for ideal homogeneous turbulence is commensurate

with it.

8.2 Real Simulations

In any simulation of real, homogeneous turbulence, care must be taken that kmax "_ kD" this

effectively sets the size of u. In general, the smaller u is, the larger kD is, but for a realistic

simulation kD cannot be larger than about N/2, the largest value of k along any coordinate

axis. Therefore, in order to reduce dissipation as much as possible in a realistic simulation,

the grid size must be made as large as practical. However, computers are finite machines and

at any given time, there is always a limit on the number of grid points N along a coordinate

axis.

Currently 3-D simulations with N = 21° _ 10 a or 2-D simulations with N = 215 _ 3 x 10 a

are possible. These require long run times and in the 3-D case only achieve a moderate

value of dissipation wave number, kD _ 29 = 512. In the 2-D case, however, we have

kD ,_ 214 = 16,384. Matching kD with kmax in any simulation is done by trying a value

of u, running the code for a short time and seeing what _ and c are, then adjusting u and

rerunning, etc., for a few iterations, until y is set so that kmax _ kD. Many simulations of

real turbulence have been done and we will not attempt to review them all here, particularly

since they give no evidence as to ergodicity or nonergodicity.

However, let us mention the one set of preliminary numerical results we know of that is

pertinent to the search for broken ergodicity in real homogeneous turbulence. These results

come from a set of runs that followed the 2-D ideal turbulence simulations presented earlier.

The initial conditions of the 2-D ideal runs CAI and CBK, which were detailed in Chapter

6, were used to initiate the dissipative runs CAD and CBKD, respectively. The runs CAID

and CBKD had the same grid and time step sizes as CAI and CBK, but the viscosity u and

resistivity _ were 'switched on' and the terms -,k25_(k)in (3.44) and -_k2_(k) in (3.45)

were retained in the simulations. (We used u = _ = 0.01.)

The numerical procedure was extended by treating the dissipative terms implicitly: once
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the iterations in (6.6) and (6.7) were performed, an additional operation was done:

(1 + #k2At)-15n+l(k) -+ 72n+l(k)

(l + #k2At)-lftn+l(k) --+ ?_n+l(k).

Here, # is either y or 7], as appropriate.

The dissipative simulations CAID and CBKD were run for 200 simulation times each,

and the maximum Kolmogorov dissipation wave number kD (for a short time during the

beginning of each run) peaked at between 26 and 46. The energy fell rapidly, as it was

dissipated at the higher wave numbers. However, an examination of the evolution of the

lowest wave number coefficients c_(0,1), c_(1,0), 8(0,1) and a(1,0) with respect to time

shows some very interesting behavior. In Figure 8.1, the evolution of &(0, 1) and c_(1, 0) for

run CAID is shown (compare this with Figure 6.7 for run CAI). In Figure 8.2, the evolution

of 5(0, 1) and 5(1, 0) for run CAID is shown (compare this with Figure 6.8 for run CAI). In

Figure 8.3, the evolution of cb(0, 1) and c_(1, 0) for run CBKD is shown (compare this with

Figure 6.9 for run CBK). In Figure 8.4, the evolution of 5(0, 1) and 5(1, 0) for run CBKD is

shown (compare this with Figure 6.10 for run CBK).

In general, the range of the values of &(0, 1), cb(1, 0), 5(0, 1) and 5(1, 0) in Figures 8.1,

8.2, 8.3 and 8.4 are about one half the range for the same coefficients in Figures 6.7, 6.8, 6.9

and 6.10 (see [Shebalin 89] for more detail). Qualitatively, the figures indicate that, except

for the Alfv_n wave behavior of c_(1, 0) and 5(1, 0) shown in Figures 8.3 and 8.4, the phase

trajectories of these 2-D simulations of real homogeneous appear nonergodic. However, the

dissipation coefficients are relatively large and the appearance of nonergodicity is suggestive,

rather than conclusive.

8.3 Some Future Directions

Although 2-D Navier-Stokes turbulence contains no ideal helical invariants, 2-D MHD does,

and it should prove very interesting if a realistic 2-D MHD simulation similar to the simu-

lation of [Matthaeus 91], 'Decaying, two-dimensional, Navier-Stokes turbulence at very long

times,' produced some interesting results in 2-D real turbulence. This work followed 2-D

Navier-Stokes turbulence, simulated for a relatively long time - over several hundred 'eddy

turnover times' - on a 5122 grid with a maximum kD _- 230. The initial flow was small-scale

and highly chaotic, and the novel result was that only two large vortices of opposite sign

remained at the end of the simulation.

In the simulation of [Matthaeus 91], relaxation to a large-scale coherent structure was

observed. In the case of 2-D MHD, the existence of an ideal helical invariant may or may not

have an effect on the outcome - this is an open question. At the least, running on a large grid

size (with smaller values of u and 7) would shed some more light on the apparent nonergod-

icity in real homogeneous MHD turbulence seen in Figures 8.1, 8.2, 8.3 and 8.4 (produced
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by relatively large values of L, and 7/). A 2-D real MHD simulation is also interesting for an-

other reason: 3-D Navier-Stokes has an ideal helical invariant, while 2-D Navier-Stokes does

not; since 2-D MHD turbulence possesses helical invariants, 3-D Navier-Stokes turbulence is

closer, in this sense, to the 2-D real MHD case than to the 2-D Navier-Stokes case.

Another direction for future investigation begins with the Navier-Stokes modal equations

(3.15) with B - 0:

d&(k) = S(fi, 5_'k) - _,k25_(k).
dt

In this equation, replace fi(k) and &(k) with

-_(k) = e_k2' fi(k), _(k) = e"k_t _(k). (8.4)

The result is

d@(k) = S(_ -;v:k).
dt ' '

Here, the nonlinear term denoted by _; is the vector convolution:

p+q=k

_;(_, @; k) - ik x y_ [e 2iup qt _.(p) X @(q)] . (8.6)
k,p, qES

The nonlinear term would look like the one for Euler flow, except for the presence of the

factor exp(-2iup.q t) within the summation (8.6). It can easily be seen that (8.5) satisfies a

Liouville equation because 0S(k)/0#(k) = 0. However, it is an open question as to whether

(8.5) possesses any invariants; if it did, then a canonical theory could be built for Navier-

Stokes turbulence, just as one was built for Euler turbulence. (This would be a first step

toward a theory of real MHD turbulence.)

8.4 Summary

Geometrically, an ideal invariant defines a hypersurface in phase space; the intersection of

these hypersurfaces contains those regions in phase space where the phase point will be

found (to within statistical fluctuations). In the presence of helical invariants, the regions

of intersection are disjoint - each region corresponds to one sign of the he!icity (as we have

seen, canonical ensemble theory is invariant with respect to the sign of a helical invariant,

and so integrates over both to produce an ensemble average). Again, this is the cause

of nonergodicity: disjoint components in phase space (Birkhoff's theorem). The ensemble

average thus does not match the time average (as the numerical results examined in Chapter

6 show).

If dissipation is turned on, these hypersurfaces start collapsing; the smaller the viscosity

and resistivity, the slower the collapse. However, the speed of the collapse is higher at larger
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magnitudes of the wave number k. If a simulation can be done with the largest kmax and kD

possible, then presumably the collapse will be the slowest possible. If, during this collapse,

the components in phase space are able to maintain their disjointness fairly well, then the

phase point may be effectively stuck on the component where it started, even if it has enough

time, dynamically speaking, to have moved a considerable distance in phase space.

The manifestation of nonergodicity lies in significantly nonzero average values for the

Fourier coefficients. (Significant can be defined as a large ratio between the absolute value of

the average and the standard deviation of a Fourier mode.) Thus, rather than seeing Fourier

mode values exhibiting a sequence of decreasing oscillations through zero, they may oscillate

about some nonzero value which is itself slowly decreasing to zero. Hints of this have been

seen in 2-D real MHD simulations on small grid sizes (322) [Shebalin 89]. It should prove

interesting to run some large grid size/low dissipation numerical experiments in 2-D real

MHD homogeneous turbulence.

8.5 Conclusion

The major portion of this work has been to describe the statistical mechanics and thermo-

dynamics of ideal homogeneous turbulence. Furthermore, this was restricted to the incom-

pressible flow of fluids and magnetofluids; i.e., Euler and ideal MHD turbulence. Numerical

experiments exposed what the canonical theory had hidden: a broken ergodicity. Although

the governing equations are symmetric under the classical symmetry transformations, this

symmetry must be dynamically broken, because a system whose motion conserves helicity

with a positive sign cannot also conserve it with a negative sign, and vice versa. Further-

more, a few preliminary 2-D dissipative MHD runs have suggested that nonergodicity may

also be a factor in real homogeneous turbulence.

Ideal homogeneous turbulence serves as a model system for real turbulence, where, how-

ever, dissipation is critical. The model is somewhat remote from reality, however, since

ideal ensemble predictions produce a spectrum that is qualitatively different from that of

the Kolmogorov k -5/3 spectrum [Kolmogorov 41], a spectrum which has been verified in

physical experiments. Nevertheless, by teaching us that some models of turbulence contain

broken ergodicity and coherent structure, perhaps ideal homogeneous turbulence has taught

us something that will ultimately be useful in our attempt to understand real turbulence, as

well as other nonlinear physical systems.

8.6 References for Further Reading

The text [Landau 87, pp. 129-135] discusses the Kolmogorov theory (as well as other classical

and modern results in turbulence theory).
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